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DNA oligonucleotide microarrays (oligoarrays) are being developed continuously; however, several issues
regarding the applicability of these arrays for whole-genome DNA-DNA strain comparisons (genomotyping)
have not been investigated. For example, the extent of false negatives (i.e., no hybridization signal is observed
when the amino acid sequence is conserved but the nucleotide sequence has diverged to a level that does not
allow hybridization) remains speculative. To provide quantitative answers to such questions, we performed
competitive DNA-DNA oligoarray (60-mer) hybridizations with several fully sequenced (tester) strains and a
reference strain (whose genome was used to design the oligoarray probes) of the genus Burkholderia and
compared the experimental results obtained to the results predicted based on bioinformatic modeling of the
probe-target pair using the available sequences. Our comparisons revealed that the fraction of the total probes
that provided experimental results consistent with the predicted results decreased substantially with increas-
ing divergence of the tester strain from the reference strain. The fractions were 90.8%, 84.3%, and 77.4% for
tester strains showing 96% 89%, and 80% genome-aggregate average nucleotide identity (ANI) to the reference
strain, respectively. New approaches to determine gene presence or absence based on the hybridization signal,
which outperformed previous approaches (e.g., 92.9% accuracy versus 86.0% accuracy) and to normalize across
different array experiments are also described. Collectively, our results suggest that the performance of
oligoarrays is acceptable for tester strains showing >90% ANI to the reference strain and provide useful
guidelines for using oligoarray applications in environmental gene detection and gene expression studies with
strains other than the reference strain.

DNA microarrays are common tools in the modern molec-
ular laboratory (34). Oligoarrays, which are typically com-
prised of one or more short, 30- to 60-nucleotide probes for
each gene in the genome, have gained popularity compared
with microarrays made with PCR products of genes for expres-
sion studies due to their greater specificity during hybridiza-
tion, flexibility of design, and potential for further technolog-
ical development (10, 23). More recently, oligoarrays have
been used for genetic (or DNA-DNA) comparisons of strains.
For this application, the array is typically built using the avail-
able genomic sequence of one strain (the reference strain) and
is used for competitive hybridization with genomic DNA of
closely related strains (the tester strains) (3, 8, 24). The objec-
tive is to reveal the differences in genes between the reference
strain and tester strains (genomotyping) that could explain the
unique characteristics of the strains. Such DNA-DNA oligoar-
ray experiments are also a promising and cost-effective means
to uncover the gene content of natural microbial assemblages
and thereby track their dynamics over time and during envi-

ronmental fluctuations. Several studies of this type have been
performed recently (4, 29, 32).

One cornerstone principle of DNA-DNA experiments is
that the intensity of the hybridization signal of a probe depends
directly on the degree of relatedness between the probe and
target sequences. The relationship between signal intensity and
sequence identity has been studied extensively previously,
based on both simple sequence comparison models and more
sophisticated models that incorporate the thermodynamic in-
teractions of the probe-target sequence pair. Accordingly, we
have a relatively good understanding of the maximum diver-
gence of the target sequence from the probe sequence that
provides a hybridization signal greater than the background
signal, which indicates the presence of the corresponding tar-
get sequence in the hybridization mixture based on the array
results (6, 13, 19, 21, 30). However, most, if not all, of the
previous studies have been performed using a small set of
selected probes and target sequences (13, 21). When thousands
of target sequences (e.g., a whole genome) are hybridized,
additional complications that cannot be accounted for by the
simple experiments described above can occur. Examples of
these complications include stereochemical interactions
among the many targets and probes present (e.g., nonspecific
hybridization), competition between (partially) identical target
sequences (cross-hybridization), and nonuniform hybridization
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behavior of targets due to differences in melting hybridization
temperature (Tm) and G�C content. Therefore, the applica-
bility of the results of the previous studies that were based on
a few probes and target sequences to the whole-genome level
remains somewhat speculative. More importantly, it has been
established that DNA-DNA experiments provide meaningful
results with tester strains belonging to the same species as the
reference strains (i.e., strains whose genomes show more than
95 to 96% nucleotide identity [9]) but not with tester strains
related to the reference strain at levels below the sequence
threshold for obtaining a significant signal greater than the
background signal (usually around 80% nucleotide identity for
oligoarrays [21]). However, we do not have a robust quantita-
tive understanding of how strains with intermediate genetic
relatedness (e.g., 80 to 95%) behave in such experiments.
Dealing with these issues is important for DNA-DNA microar-
ray applications, especially applications for environmental
samples, which are characterized by high levels of species and
genomic heterogeneity. For instance, natural populations
sometimes show intrapopulation genomic diversity (expressed
as levels of nucleotide identity) ranging from 90 to 100%, as
revealed by recent metagenomic surveys (15, 31). The issues
described above are also relevant to the use of oligoarrays for
gene expression studies with strains other than the reference
strain.

Here, we quantitatively assessed the performance of oligoar-
rays by conducting competitive hybridizations between a ref-
erence strain and selected tester strains that were fully se-
quenced and showed increasing genetic divergence from the
reference strain. We then compared the experimental oligoar-
ray results to bioinformatically predicted results based on
whole-genome sequence comparisons. Our analyses allowed
precise estimation of the numbers of false negatives (FN) (no
hybridization signal observed when the amino acid sequence is
conserved but the nucleotide sequence has diverged enough
that there is no hybridization) and false positives (FP) for
strains belonging to the same species as the reference strain or
closely and moderately related species. We also describe a new
simple method to normalize arrays from different experiments
and determine the presence of a gene based on the hybridiza-
tion signal that outperforms previously described approaches.

MATERIALS AND METHODS

Strains used in the study and their genetic relatedness. The following six
strains were used in this study: Burkholderia cenocepacia J2315 (reference
strain), B. cenocepacia AU1054, B. cenocepacia HI2424, Burkholderia ambi-
faria AMMD, Burkholderia vietnamiensis G4, and Burkholderia xenovorans
LB400. The whole-genome sequences of these six strains were obtained from
the National Center for Biotechnology Information website (ftp://ftp.ncbi.nih
.gov/). The genetic relatedness between the reference strain and a tester
strain was measured based on the genome-aggregate average nucleotide
identity (ANI) and 16S rRNA gene sequence identity. ANI values were
calculated based on all reciprocal best-match conserved genes for the two
strains (pairwise), as previously described (17). To calculate 16S rRNA gene
sequence identities, all 16S rRNA gene copies in the genome of the reference
strain were queried against the genome of the tester strain using the BLASTN
algorithm (2). The average nucleotide identities for all copies, as determined
by BLAST, are shown in Table 1.

DNA microarray fabrication. The arrays used in this study were B. cenocepacia
60-mer Agilent oligoarrays with one probe per gene, which have been described
previously (18). Here, we focused on the 6,308 probes of this array that were
designed based on the gene sequences of the B. cenocepacia strain J2315 genome
(reference).

DNA microarray template preparation, hybridization, and signal processing.
Genomic DNA from all strains was purified from 5-ml cultures grown in LB
medium overnight at 37°C by using a Wizard genomic DNA purification kit
(Promega, Madison, WI) according to the manufacturer’s instructions. Two
micrograms of genomic DNA from each strain was sonicated using a Heat
Systems Ultrasonics W-225 20-kHz, 200-W cup sonicator (Misonix, Farmingdale,
NY) to generate sheared genomic DNA from 0.5 to 5 kb long. For each sample,
300 ng of sheared DNA was labeled with either Cy3 or Cy5 dye using the
methods described by Wick et al. (33). Equal amounts of tester and reference
(J2315) samples with similar specific activities were mixed in 4 �l 10 mM EDTA
(pH 8.0) and heated to 95°C for 5 min. Samples were mixed with 45 �l of
SlideHyb buffer 1 (Ambion, Austin, TX) by pipetting. Preparation of hybridiza-
tion mixtures, loading procedures, and slide washing were performed by using
Agilent’s recommended protocols (1) with 16 h of hybridization at 65°C and with
agitation and the optional stabilization and drying solution final wash. Two or
more hybridizations were performed for each tester strain with at least one dye
swap. Microarrays were scanned using an Axon GenePix 4000B scanner
(Molecular Devices, Sunnyvale, CA), and probe intensities were extracted
using GenePix Pro 5.0 software. The log hybridization signal ratio for each
probe was calculated using the ratio of the background-subtracted mean
probe signal of the tester to the background-subtracted mean probe signal of
the reference strain with the following equation: log hybridization ratio � log
[(MS � BS)tester/(MS � BS)reference], where MS and BS are the mean probe
and median background signals, respectively.

Bioinformatics sequence analysis. To bioinformatically determine the degree
of relatedness between a probe sequence and the target sequence in a tester
genome, the BLAST score approach was used, essentially as described previously
(26). In brief, the 60-mer oligonucleotide probe sequences were searched against
the whole genome of a tester strain using the BLASTN algorithm (2) with the
following settings: X � 150 (drop-off value for gapped alignment), q � �1
(penalty for nucleotide mismatch), F � F (filter for repeated sequences), W � 7
(word size), and the default settings for the rest of the parameters. These settings
are more robust for identifying moderately related short matches (i.e., sequences
showing 60 to 80% nucleotide identity) than the default settings, which target
sequences with high levels of identity (�90% nucleotide identity) (17). The
BLAST score of a probe against the tester genome was calculated by subtracting
the number of internal mismatches from the total length of the alignment for
only the best BLASTN match (for multiple matching targets, see below). Thus,
the BLAST score for probes that had a perfect match was 60. The BLAST score
for a probe against a tester genome was divided by 60 (the score for a perfect
match of the probe against the reference genome) to obtain the BLAST score
ratio (BSR) of the probe against the tester genome, as follows (similar to
calculation of the experimental hybridization signal ratio): BSR (%) � 100 �
(BLAST score)tester/60.

To bioinformatically estimate the expected hybridization signal of a probe that
had multiple matching targets in a tester genome, the following procedure was
used. First, the multiple matches of a probe that had a BSR less than 83% were
removed from the analysis because oligoarray hybridization experiments indi-
cated that probes with BSR less than 83% did not typically provide hybridization
signals greater than the background signal (Fig. 1). For the remaining matches of
a probe, the bioinformatically expected hybridization signal of an individual
match was assumed to equal the experimentally derived average hybridization
signal of all single-match probes with the same BSR for the match in question
(based on the equation shown in Fig. 1, inset). Finally, the expected signals for
each match of a probe were added to obtain the bioinformatically predicted
cumulative signal for the probe due to the multiple matches. This procedure was

TABLE 1. Tester strains used in this study and their levels of
relatedness to the reference strain

Tester strain

% Relatedness to J2315a

ANI 16S rRNA gene
sequence identity

B. cenocepacia HI2424 95.1 99.7
B. cenocepacia AU 1054 95.1 99.7
B. ambifaria AMMD 90.3 99.4
B. vietnamiensis G4 89.1 99.4
B. xenovorans LB400 79.8 96.0

a ANI was calculated as described previously (17); 16S rRNA gene sequence
identity was calculated as described in Materials and Methods.
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used for both the tester and reference strains, as follows: predicted hybridization
signal for individual match � 0.00009 � exp(0.1601 � BLAST score) and
predicted logarithmic signal ratio for probe � log(sum of predicted hybridization
signals for tester/sum of predicted hybridization signals for reference).

To bioinformatically determine the genes that were shared by the reference
genome and a tester genome, the sequences of all reference genes were searched
against the whole genome of the tester strain for reciprocal best-match conserved
genes. Conserved genes were defined using the following two cutoffs: (i) for
nucleotide-level conservation, BLASTN was used for the search with the settings
described above for the probe sequences and a minimum cutoff for a match of at
least 70% identity and 70% of the length of the reference gene covered in the
corresponding alignment; and (ii) for amino-acid-level conservation, BLASTX
was used for the search with default settings and a cutoff for a match of at least
50% identity and 70% of the length of the reference gene in the corresponding
alignment (a less stringent cutoff).

Signal threshold methods for examining gene presence. Two of the most
commonly used methods for determining gene presence based on experimentally
derived hybridization signals were compared to our method (see the Results) for
the same purposes. In one of these methods (the SNR1 method) the ratio of the
background-subtracted signal divided by the standard deviation of the back-
ground signal was used (7, 11, 34): SNR1 � (MS � BS) � SBS�1, where SNR is
the signal-to-noise ratio, MS and BS are the mean probe and background signals,
respectively, and SBS is the standard deviation of background signal. In the other
method (the SNR2 method) the ratio of the mean signal to the mean background
signal was used, taking the signals of negative controls into account, as described
by Loy et al. (22): SNR2 � [MS � (MSN � BSN)] � BS�1, where MSN and BSN
are the mean probe signal and background signal of the negative controls,
respectively. The most frequently employed SNR cutoffs for these methods are
2.0 and 3.0 (7, 11, 34); an SNR value of 2.0 was used in this study for both
methods.

GACK analysis was performed as described by Kim et al. (14). In brief, the
GACK algorithm examines the shape of the experimentally derived hybridization
signal ratio distribution of an individual microarray experiment to determine a

signal threshold for gene presence or absence based on a normal probability
density function (expected distribution) and a user-defined estimated probability
of presence (EPP). EPP indicates the number of genes that are expected to be
absent (i.e., the number of genes that are expected to not give a hybridization
signal greater than the background signal) due to sequence divergence of the
tester strain from the reference strain. We employed two values for EPP, 0 and
50, in our microarray experiments, as previously suggested (14). We report here
only the results obtained using an EPP value of 50 since this standard was more
relevant for our experiments that were performed with strains divergent from the
reference strain.

Microarray data accession number. The raw microarray intensity data have
been deposited in the GenBank Gene Expression Omnibus (GEO) database
under accession number GSE20096.

RESULTS

Relatedness of the tester strains to the reference strain. Our
DNA-DNA oligoarray experiments were performed with strains
of the genus Burkholderia due to the availability of a previously
tested 60-mer Agilent oligoarray for an important member of
this genus, B. cenocepacia J2315 (18), an epidemic isolate from
a cystic fibrosis patient (12), and the availability of several
sequenced strains that show different levels of divergence from
J2315 (Table 1). The 16S rRNA gene sequences of the six
Burkholderia strains used in this study showed 96 to 99.7%
sequence identity, which is consistent with their high level of
genetic relatedness (they belong to the same or closely related
species). When the genetic relatedness was measured by using
genome-aggregate average nucleotide identity (ANI), a more
sensitive parameter for measuring evolutionary relatedness of
closely related genomes (17), a gradient of genetic relatedness
was observed. In particular, strain J2315 showed �95% ANI to
B. cenocepacia strains AU1054 and HI2424. These values
match the 95% ANI that corresponds to the 70% DNA-DNA
hybridization standard frequently used for species demarcation
(9). Hence, these pairs of genomes sample the subspecies level.
J2315 showed �91% and 89% ANI to B. ambifaria AMMD
and B. vietnamiensis G4, respectively, which represent different
levels of genetic relatedness within the genus. Finally, J2315
showed �80% ANI to B. xenovorans LB400, which represents
the most divergent species sampled within the genus. This
genetic gradient provided the opportunity to precisely estimate
the number of false positives and false negatives in oligoarray
DNA-DNA experiments when J2315 (reference strain) was
compared with the five tester strains.

Relating the oligoarray signal to probe target sequence re-
latedness and determining the signal threshold cutoff. To
bioinformatically predict the probes that should provide sig-
nals greater than the background signal based on their se-
quence similarity to the target sequences in the genomes of the
tester strains, we used the BLAST score-based approach be-
cause of its simplicity and satisfactory accuracy (26). We de-
termined the BLAST score for each probe compared with the
top matching gene sequence in the whole genome of a tester
strain. Subsequently, we calculated the BLAST score ratio
(BSR) of the probe (i.e., the BLAST score with the tester
divided by the BLAST score with the reference, which was
always 60 due to the perfectly matching probe sequence) and
plotted it against the experimentally derived oligoarray hybrid-
ization signal ratio for the same probe. The analysis was re-
stricted to probes that had only one match in the genome to
avoid the complications resulting from multiple matching tar-

FIG. 1. Relationship between microarray hybridization signal and
BLAST score ratio (BSR). Competitive DNA-DNA oligoarray hybrid-
ization was performed with B. vietnamiensis G4 (tester strain) and B.
cenocepacia J2315 (reference stain). The experimental log hybridiza-
tion signal ratios of probes (y axis) are plotted against the BSR of the
probes (x axis); a log ratio of zero indicates that the hybridization
signal intensity of G4 is equal to that of J2315. Data points indicate the
mean log hybridization ratios of all probes with the same BSR; the
error bars indicate one standard deviation from the mean. A total of
6,308 probes were included in the analysis; the number of probes used
per unit of BSR is shown in Fig. 3. The dashed arrows indicate bioin-
formatic probe and experimental signal thresholds corresponding to
the point of inflection. (Inset) Linear regression analysis of the mean
log hybridization signal (y axis) plotted against the BLAST score,
defined as described in Materials and Methods, for the same data set
and BLAST scores in the range from 50 to 60, which corresponded to
BSR of 83 to 100%.
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gets (see below). Our results revealed that the relationship
between the signal ratio and the BSR was clearly biphasic. In
particular, a linear dynamic decrease in the oligoarray hybrid-
ization signal was observed for BSR of 83 to 100%; at values
below the 83% inflection point, the slope of the regression line
decreased significantly, and the line became almost flat (Fig.
1). Hence, significant hybridization signals greater than the
background signal were obtained only for probes whose BSR
with the tester strain (relative to the reference strain) was at
least 83%.

The strong linear regression between the signal ratio and the
BSR in the 83 to 100% BSR range was attributable to the
almost perfect (R2 � 0.99) correlation between the average
hybridization signal intensity (based on all available probes)
and the BLAST score in the BLAST score range from 50 to 60
(Fig. 1, inset). The latter results also revealed that the hybrid-
ization signal can, in general, be predicted robustly from the
BLAST score, which is consistent with previous findings (26).

The slope of the regression line for BSR in the 30 to 83%
range (Fig. 1) was due to an increase in the hybridization signal
from the targets in the reference strain. This is most likely
attributable to less competition from the targets of the tester
strain for the available probe molecules on the chip in this BSR
range due to an increased number of mismatches or no se-
quence match of the targets with the probe sequence (i.e., little
or no hybridization). Hence, more probe molecules were avail-
able for the reference targets to bind. These results were re-
producible independent of the genetic relatedness of the strain
tested to the reference strain.

FP and FN as a function of the relatedness of the tester
strain to the reference strain. To evaluate oligoarray perfor-
mance, we employed a BSR of 83% as the cutoff for predicting
bioinformatically which probes should have been expected to
provide signals greater than the background signal and the
average experimental hybridization signal ratio of all probes
that showed a BSR of exactly 83% in each hybridization ex-
periment (e.g., ��1.3 in the example shown in Fig. 1) as the
signal threshold for determining which probes provided hy-
bridization signals greater than the background signal. The
latter probes represented the genes that would have been con-
sidered present in the tester strain based on the experimental
hybridization results and the previous signal threshold. Our
evaluation revealed that most (�80%) probes provided exper-
imental hybridization results consistent with the bioinformatic
prediction using the standards described above (good probes
[GP]). However, the fraction of GP decreased with greater
divergence of the tester strain from the reference strain (Fig.
2), and there was a corresponding increase in false positives
(FP) (i.e., probes that bioinformatically were not supposed to
provide a signal greater than the background signal because
they matched the tester genome at BSR less than 83%) (Fig.
1). For instance, GP constituted 90.8%, 88.5%, 84.3%, and
77.4% of all probes for tester strains with 95%, 91%, 89%, and
80% ANI to J2315, while the percentages of FP were 4.7%,
5.4%, 9.1%, and 16.7% for the same strains, respectively. The
probes that contributed disproportionally to the pool of FP
probes were the probes whose BSR were close to the BSR
threshold (83%); in fact, there were very few FP probes among
the probes that had a BSR less than about 70% (Fig. 3). The
number of false-negative (FN) probes (i.e., probes with BSR

greater than 83% that provided hybridization signals that were
less than the background signal) was relatively constant with
the ANI of the tester strain, and these probes constituted
about 5 to 6% of all of the probes (Fig. 2).

To perform an assessment of oligoarray performance for
genomotyping that is more relevant for practical use, we also
compared the probes that provided experimental hybridization
signals greater than the background signal to the actual genes
that were shared by the tester and reference genomes based on
whole-genome nucleotide sequence comparisons. We found
that the number of GP, defined in this case as the probes that
gave hybridization signals greater than the background signal
regardless of their BSR and corresponded to reference genes
present in the tester genome (each probe is specific for one
reference gene), also decreased with decreasing ANI of the
tester strain to J2315, similar to the probe-level assessment
described above (Table 2 shows the definitions for GP, FP, and
FN for each assessment). However, the decrease was more
dramatic for the assessment of gene versus probe level, as the
percentages of GP in the former assessment were 90.1%,
86.3%, 82.0%, and 70.0% for tester strains according to their
ANI rank (Fig. 2). These findings were due to a higher number
of FN probes, defined in this case as the probes that corre-
sponded to shared genes based on the bioinformatic sequence
analysis and provided experimental hybridization signals less
than the background signal regardless of their BSR, in the
assessment of gene versus probe level. The increased number
of FN probes in the gene-level assessment was attributable
mostly to two factors. One of these factors was tester genes
whose levels of nucleotide sequence identity to their orthologs
in the reference genome were in the range from 70 to 83%;

FIG. 2. Assessment of oligoarray performance with increasing re-
latedness of the tester strain to J2315. The average numbers of good
probes (GP), false-positive probes (FP), and false-negative probes
(FN) for J2315 and a tester strain (y axis) are plotted against the ANI
of the tester strain to J2315 (x axis). Three independent assessments
were performed (see text for details), a probe-level assessment, a
nucleotide gene-level assessment (nt), and an amino acid gene-level
assessment (aa). GP, FP probes, and FN probes for each assessment
level were defined as shown in Table 2. The results obtained with the
GACK algorithm (14) and the same data sets are also shown. GACK
was performed using an estimated 50% probability of presence (for
details, see Materials and Methods). A total of 6,308 probes were
analyzed in each microarray hybridization experiment; four to eight
experiments, including dye swaps, were performed for each tester
strain. The error bars indicate one standard deviation from the mean
for the experiments analyzed for each tester strain.
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hence, these genes were considered genes that were shared by
the tester and reference genomes (since the level of identity
was more than the cutoff for considering a gene present), but
the corresponding probe typically provided a hybridization sig-
nal less than the background signal (since it had �83% nucle-
otide identity to the target in the tester genome). This type of
FN probes was more abundant for comparisons with distantly

related genomes (i.e., genomes with more orthologs with se-
quence identities in the 70 to 83% range). The second factor
was the fact that the FN probes for the gene-level assessment
included most, if not all, of the FN probes for the probe-level
assessment (i.e., probes the showed BSR of �83% and pro-
vided signals less than the background signal). These findings
also suggest that DNA-DNA microarray studies can underes-
timate substantially the actual levels of gene content similarity
between the genomes compared. In contrast, the number of
FP probes was slightly lower for the assessment of gene
versus probe. This was due to the fact that several FP probes
for the probe-level assessment (i.e., probes that showed BSR
less than 83% and provided hybridization signals greater than
the background signal) corresponded to J2315 genes that were
actually shared by the tester genome. Such probes were in-
cluded in the GP category for the gene-level assessment in-
stead of the FP category for the probe-level assessment; thus,
the number of FP probes in the gene-level assessment was
typically less than the number of FP probes in the probe-level
assessment.

When shared genes were assessed at the amino acid level
(which provided a less stringent but probably more realistic
estimate of shared protein-encoding genes), an even smaller
number of GP with decreasing ANI of the tester strain to J2315
was observed. For instance, the percentages of GP were 89.9%,
84.4%, 80.2%, and 64.8% with decreasing ANI at the amino
acid level, compared with 90.8%, 88.5%, 84.3%, and 77.4% at
the nucleotide gene level, respectively (Fig. 2). The latter re-
sults were attributable to the fact that the amino acid level was
more conserved than the nucleotide level; thus, more shared
genes were found for J2315 and the tester strains in the amino
acid comparisons, and more genes in this gene set had related
nucleotide sequences with BSR values below the 83% cutoff
(contributing FN probes). Finally, the FN and FP probes in the
gene- or probe-level assessments were typically tester strain

FIG. 3. False positives and false negatives as a function of the degree of sequence similarity between the probe and the target. Competitive
DNA-DNA oligoarray hybridization was performed with B. vietnamiensis G4 and J2315. The numbers of all probes (y axis on the left) that provided
false-positive (y axis on the right) and false-negative (y axis on the right) signals were plotted against the BSR (x axis) of the corresponding probes
(probe-level assessment; see Table 2 and the text for details). The analysis was based on using a BSR of 83% as the cutoff for bioinformatically
predicting the probes that were expected to provide signals greater than the background signal and the average log hybridization signal ratio of
all single-match probes for a BSR of 83% as the threshold for identifying the probes that experimentally provided signals greater than the
background signal, according to the results shown in Fig. 1. A total of 6,308 probes were included in the analysis. Similar results were obtained
with other tester strains.

TABLE 2. Definitions of good probes, false-negative probes, and
false-positive probes for the assessments performed

Case

Results for the following conditions
used to determine gene presencea: Probe defined by bioinformatics

and exptl signal
Bioinformatics

Exptl
signalAmino

acid
Nucleotide

(gene)
Nucleotide

(probe)
Amino

acid
Nucleotide

(gene)
Nucleotide

(probe)

1 1 1 1 1 GP GP GP
2 1 1 1 0 FN FN FN
3 1 1 0 1 GP GP FP
4 1 1 0 0 FN FN GP
5 1 0 1 1 GP FP GP
6 1 0 1 0 FN GP FN
7 1 0 0 1 GP FP FP
8 1 0 0 0 FN GP GP
9 0 1 1 1 FP GP GP
10 0 1 1 0 GP FN FN
11 0 1 0 1 FP GP FP
12 0 1 0 0 GP FN GP
13 0 0 1 1 FP FP GP
14 0 0 1 0 GP GP FN
15 0 0 0 1 FP FP FP
16 0 0 0 0 GP GP GP

a 1, present (or signal greater than the background signal) based on the cutoffs
used (see Materials and Methods); 0, absent (or signal less than the background
signal) based on the cutoffs used (see Materials and Methods). For example, in
case 3, the bioinformatic assessment indicated that the target gene (i.e., the
ortholog in the corresponding reference strain) was present in the tester genome
at the gene level at both the amino acid and the nucleotide levels, but the BSR
of the probe with the target gene sequence was less than 83%. Accordingly, since
the experimental hybridization signal for the probe was greater than the back-
ground signal (as indicated by the experimental signal entry), the probe was
defined as a GP for the gene-level assessments but as an FP probe for the
probe-level assessment.
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specific, although a few probes consistently showed FP or FN
signals independent of the tester genome used (Fig. 4). How-
ever, the latter probes were frequently attributed to specific
characteristics of the corresponding genes. For instance, the
probes that systematically yielded FN signals were frequently
associated with genes that evolved faster than the average gene
in the genome, such as genes encoding membrane-associated
proteins, and thus showed lower levels of nucleotide sequence
identity to their J2315 orthologs than to the rest of the genes.

Methods for determining the signal threshold for gene pres-
ence. Two of the most popular approaches for defining the
presence of genes based on the difference between the probe
hybridization signal and the background signal (22) revealed
trends similar to those obtained with our method based on the
average signal for probes showing a BSR of exactly 83% (data
not shown). However, the two former methods performed sub-
stantially worse than our BSR method based on two indepen-
dent experiments with strain HI2424 (�95% ANI to J2315). In

particular, the number of FP and FN probes did not exceed
3.7% of all of total probes based on our method, while the FN
and FP probes accounted for 8.7% and 10.3% of all of the
probes based on the SNR2 and SNR1 methods, respectively
(Fig. 5). Also, the percentages of GP were 86.0%, 88.7%, and
92.9% as determined by the SNR1 and SNR2 methods and our
method, respectively. Thus, our approach clearly outper-
formed the approaches described previously. Using a threshold
different than 83% is unlikely to further improve the process-
ing of microarray data in practice. For instance, increasing the
BSR threshold (i.e., being more stringent) resulted in a dis-
proportionally increased number of FN probes and a propor-
tionally decreased number of FP probes, while decreasing the
threshold had the reverse effect, as suggested previously (11).

We also compared the results of our method to those of a
tool commonly used in bacterial genomotyping, GACK (14).
GACK does not employ an a priori determined signal thresh-
old for gene presence (as SNR methods do) but, similar to our
method, determines the threshold based on the shape of the
signal ratio distribution for each microarray experiment indi-
vidually (14). Our evaluation showed that GACK provided
slightly worse results than our method for tester strains show-
ing 95% ANI to the reference strain; e.g., the number of GP
was smaller, while the performance declined dramatically for
strains showing �90% ANI to the reference strain. In the
latter case, the percentage of GP for GACK was only �75%,
compared with �88% for our method (Fig. 2). The decreased
performance of GACK was also reflected by the greater vari-
ation (Fig. 2) in the number of GP or FN probes for different
oligoarray experiments with the same tester strain (dye swaps).
We were not able to perform GACK with more divergent
tester strains because GACK requires the shape of the signal
ratio distribution to approximate normal in order to determine

FIG. 4. False-positive and false-negative probes are typically tester
strain specific. A heat map shows an overview of the good (black),
false-positive (green), and false-negative (red) probes for four tester
strains with increasing ANI to J2315. The results for a total of 6,308
probes are represented by horizontal lines. Data for two independent
(i.e., not dye swap) competitive microarray hybridizations for each
tester strain are shown in columns 1 and 2.

FIG. 5. Comparison of different methods for estimating the signal
threshold ratio. The presence of a J2315 gene in B. cenocepacia HI2424
was determined based on the experimental hybridization signal ratio of
the corresponding probe using three different methods for defining the
signal threshold ratio for gene presence (see Materials and Methods
for details), the SNR1 (7, 11, 34), SNR2 (22), and BSR (this study)
methods. The genes were then checked against the genes shared by
J2315 and HI2424 based on bioinformatic whole-genome sequence
comparisons (nucleotide gene-level assessment), and the results are
shown. The bars indicate the average values for two microarray exper-
iments (dye swaps).
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the signal threshold and such a shape was not observed for
these strains (because the majority of the hybridization signals
were too similar to the background signal). These findings
were also consistent with findings reported previously for di-
vergent tester strains (14). Thus, GACK is not appropriate for
tester strains that show less than �95% ANI to the reference
strain (i.e., strains in different species).

Identifying gene duplications based on microarray signals.
To assess the contribution of multiple matching targets to the
hybridization signal of a probe (cross-hybridization) and to
determine whether a higher hybridization signal can be used to
identify duplicated genes in the tester genome compared to the
reference genome (or vice versa), the following analysis was
performed. We identified the J2315 probes that matched two
or more genes in the B. vietnamiensis G4 genome with BSR of
�83%. Fifty-five probes in the total pool of about 6,308 probes
met these criteria. Subsequently, we bioinformatically pre-
dicted the expected hybridization signals for these probes in
the tester and reference genomes, as described in Materials
and Methods, and compared the resulting ratios to the actual,
experimentally derived hybridization signal ratios for the same
probes. The comparisons indicated that the experimental hy-
bridization signal ratio correlated significantly better with the
predicted ratio based on all matches of a probe than with the
predicted signal based on only the best match (Pearson corre-
lation coefficients, 0.65 and 0.48, respectively) (Fig. 6). Hence,
a higher hybridization signal may indicate multiple matching
targets (e.g., duplicated genes) in the tester strain compared to

the reference strain, and the equations described here could be
used to identify such duplicated genes.

DISCUSSION

Oligoarrays represent a mature technology; however, all is-
sues associated with the broad applications of oligoarrays have
not been fully elucidated, as a plethora of recent studies have
indicated (25, 27, 29). In this study, we used complete genomic
sequences of several tester strains to validate microarray re-
sults and to obtain quantitative assessments of the perfor-
mance of oligoarrays for whole-genome DNA-DNA competi-
tive hybridization. Our findings reveal that the numbers of
microarray FP and FN probes are not negligible even for tester
strains of the same species; e.g., they may constitute �5% of all
probes. Our findings also provide robust estimates of the num-
ber of FP and FN that should be expected based on the degree
of genetic relatedness of the tester strain to the reference
strain (Fig. 2). Our analysis showed that the performance of
oligoarrays decreased gradually (as opposed to abruptly) with
decreasing genetic relatedness of the tester strains in the 80 to
100% ANI range. Accordingly, some of the hybridization sig-
nal data, particularly the absence of a signal, which indicated
that the corresponding gene was not shared, were reliable even
with highly divergent tester strains (e.g., strains showing �80%
ANI to the reference strain). As a rule of thumb, however, we
recommend that tester strains should not exhibit less than
about 90% ANI to the reference strain, if it is expected that at
least 90% of the probes will provide reliable signals (GP) (Fig.
2). We also did not observe any apparent biases in the number
of FP or FN probes among the probes for core and noncore
genes in the genome (“core” denotes genes shared by all ge-
nomes in a group), except for a few predictable genes. For
instance, informational genes (e.g., genes encoding ribosomal
proteins, DNA and RNA polymerases, etc.), which tend to
show higher levels of nucleotide sequence conservation than
the genome average level (15), had more GP and fewer FN
probes than genes that tend to evolve faster than the average
gene, such as genes encoding membrane and sensory proteins,
transposases, and hypothetical proteins.

Notably, FP results were observed even with probes that had
very low BSR (e.g., �70%) with the target sequence, and these
probes accounted for about one-half of all FP probes (despite
the fact that FP probes with BSR closer to 83% were more
frequent [Fig. 3]). The former FP probes were likely attribut-
able to nonspecific or nonorthologous target sequences that
matched the probe sequences in short but identical segments,
as hypothesized previously (11). However, we were unable to
come up with simple and reliable rules for sequence similarity
or the position of internal mismatches in the probe-target
sequence pair that underlie the behavior of such FP probes
since the target sequences that hybridized to the probes were
not known. Further, our evaluations indicated that predicting a
priori which probes are likely to provide FN (or FP) signals is
not generally feasible, since these probes were typically tester
strain specific (Fig. 4). Thus, it should be taken for granted that
in DNA-DNA experiments and in expression experiments with
strains other than the reference strain, a portion of the hybrid-
ization signal, which depends primarily on the degree of ge-
netic relatedness of the tester strain to the reference strain

FIG. 6. Modeling the effect of multiple matching targets to the
total hybridization signal of a probe. For 55 probes there were two or
more matches in the B. vietnamiensis G4 genome with a BSR of 83%
or higher. For each match of a probe, we calculated the predicted
microarray hybridization signal based on the relationship shown in the
inset in Fig. 1 (see Materials and Methods for details), and the pre-
dicted signals were added to obtain a bioinformatic estimate of the
total predicted signal for the probe. The total predicted signal (ex-
pressed as log ratio on the y axis) is plotted against the actual exper-
imental hybridization signal ratio of the probe (x axis). Much better
Pearson correlation (R) between predicted and actual signal ratios was
observed when the predicted signal was calculated using all multiple
matches of a probe than when the predicted signal was calculated using
only the best match.
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(Fig. 2), cannot be trusted to be a reliable proxy for gene
presence and activity, respectively.

Traditional approaches for determining gene presence
based on DNA-DNA microarray experiments have typically
employed thresholds for the probe hybridization signal based
on the background hybridization signal (20, 22) or based on the
shape of the signal distribution for all probes (14). Although
these approaches are intuitive and easy to use, they are based
on arbitrary thresholds and/or are vulnerable to variable biases
resulting from slide heterogeneities, including unequal DNA
templates, different amounts of incorporated dye, uneven la-
beling and hybridization conditions etc., and from the degree
of genetic divergence of the tester strains (5, 28). In contrast to
these traditional methods, the BLAST score-based method
developed in this study employs slide-specific thresholds based
on the dynamic hybridization range of probes (i.e., the average
signal corresponding to the inflection point [Fig. 1]) and out-
performs the previously described approaches (Fig. 2 and 5).
For the Agilent oligoarrays used in this study, the dynamic
hybridization range corresponded consistently to BSR of 83 to
100%, regardless of the tester strain used (data not shown),
while the average hybridization signal of probes with a BSR of
83% (i.e., the signal threshold for determining gene presence)
varied slightly in different hybridization experiments, depend-
ing primarily on the dye incorporation efficiency and the
amount of DNA labeled for each dye. The BSR of �83% is
similar to the 85% nucleotide sequence identity cutoff pro-
posed previously for determining the 50-mer probes that were
expected to cross-hybridize with the target sequences (11).

To apply our approaches to nonsequenced tester strains, we
recommend obtaining the sequences of at least a few genes in
the genome of each strain (e.g., genes that are sequenced as
part of multilocus sequence typing [MLST]). These sequences
could be used to determine the relationship between hybrid-
ization signal and BSR, as shown in Fig. 1. The curve of this
relationship can subsequently be employed to make educated
predictions about the signal threshold that corresponds to the
inflection point. It can also help normalize the hybridization
signal across different oligoarray experiments based on the
shape of the curve for each experiment (e.g., by applying a
normalization factor that would bring the inflection point to
the same signal and BSR values for each slide). Our previous
work also provided a means to estimate ANI values for any two
strains for which MLST data are available (16).

Gene duplication and independent acquisition of highly sim-
ilar genes are important evolutionary processes in bacteria and
lower eukaryotes, and they frequently reflect ecological adap-
tation of a lineage, such as increased virulence. However, using
competitive DNA-DNA oligoarray experiments to identify
such “duplicated” genes in the tester strain compared to the
reference strain or vice versa is technically challenging. We
found that duplicated genes typically resulted in increased hy-
bridization signals (Fig. 6); thus, an increased signal may in fact
indicate duplicated genes. While the trend line shown in Fig. 6
would be useful for identifying such candidate genes, further
improvements in modeling the expected hybridization signal
based on sequence similarity beyond what is encompassed by
the BSR (25) and/or employing several probes per gene are
necessary for more accurate predictions.

Although we tested only one type of oligoarray platform, our

preliminary work with other platforms, such as the oligo-spot-
ted MWG arrays for Escherichia coli (MWG Biotech) and a
custom-made 50-mer in situ-synthesized oligoarray from Bio-
discoveries LLC (Ann Arbor, MI), provided results similar to
those obtained with the Agilent oligoarrays (our unpublished
observations). Nonetheless, small variations in performance
between the different platforms were observed, and in situ
oligoarrays typically performed better than spotted oligoarrays
and had a clearer dynamic hybridization range. Therefore, our
results provide useful practical guidelines for designing mi-
croarray experiments for a wide range of microarray platforms.
Further, the genus Burkholderia targeted by our Agilent oligo-
arrays is one of the most metabolically versatile bacterial gen-
era known, and its members have some of the largest genomes
(�8 Mbp); it also includes both clinical (e.g., J2315) and non-
clinical representatives involved in cycling organic matter in
soils and sediments and controlling fungal diseases. Therefore,
our findings obtained with Burkholderia strains have important
implications for studying additional members of this important
genus with oligoarrays and should be applicable to other bac-
terial groups as well. While bacterial genome sequencing is
becoming less costly, genomotyping with microarrays will likely
remain cost-effective for larger-scale strain comparisons and
for environmental surveys of genes of complex microbial com-
munities for some time, since adequately covering all members
of a community with sequencing remains out of reach for
current sequencing technologies.
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