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Summary

The number of functional traits of a wastewater
treatment plant (WWTP) microbial community (i.e.
functional richness) is thought to be an important
determinant of its overall functional performance, but
the ecological factors that determine functional rich-
ness remain unclear. The number of taxa within a
community (i.e. taxonomic richness) is one ecological
factor that might be important. Communities that
contain more taxa are more likely to have more func-
tional traits, and a positive association is therefore
expected between functional and taxonomic richness.
Empirical tests for this positive association among
WWTP communities, however, are lacking. We
address this knowledge gap by measuring the func-
tional and taxonomic richness of 10 independent
WWTP communities. We demonstrate that functional
and taxonomic richness are positively associated with
each other. We further demonstrate that functional and
taxonomic richness are negatively associated with the
effluent NH4-N and BOD5 concentrations. This led us to
hypothesize that correlated variation in functional and
taxonomic richness is likely related to variation in
ambient nitrogen and carbon availability. We finally

demonstrate that this hypothesis is consistent with
the functional and taxonomic attributes of the WWTP
communities. Together, our results improve our basic
understanding of the ecology and functioning of
WWTP communities.

Introduction

Wastewater treatment plant (WWTP) communities
are employed to convert a wide variety of organic sub-
strates into CO2 and biomass (Rittmann and McCarty,
2001), biodegrade many thousands of pollutants
(Schwarzenbach et al., 2006), and withstand perturbations
to their environment (Briones and Raskin, 2003). All of
these performance objectives are thought to depend on
functional richness (i.e. the number of functional traits of a
community) (Fernandez et al., 2000; Hashsham et al.,
2000; Briones and Raskin, 2003; Cook et al., 2006; Gentile
et al., 2007; Wittebolle et al., 2008; Werner et al., 2011;
Yang et al., 2011; Hernandez-Raquet et al., 2013). The
ecological factors that determine functional richness,
however, are often unclear. Taxonomic richness (i.e. the
number of taxa within a community) is one ecological factor
that might be important. Communities with more taxa are
more likely to have more functional traits, and a positive
association is therefore expected between functional and
taxonomic richness (Chapin et al., 1997; Naeem and
Wright, 2003; Cadotte et al., 2011). Empirical tests for this
positive association among WWTP communities, however,
are lacking or are not supported by statistical analyses,
thus representing an important gap in our knowledge about
the ecology and functioning of WWTP communities.

Although there have not been any rigorous empirical
tests for positive associations between functional and
taxonomic richness among WWTP communities, there
have been tests among other types of microbial commu-
nities. Collectively, however, these tests have generated
inconsistent outcomes. In one study, a positive associa-
tion was observed among undisturbed soil microbial
communities but not among disturbed soil microbial com-
munities (Yergeau et al., 2012). In another study, a posi-
tive association was observed among a diverse set of
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vegetative and non-vegetative soil microbial communities
but not among a less diverse set of only vegetative soil
microbial communities (Fierer et al., 2012). Finally, posi-
tive associations were observed among some types of
aquatic microbial communities (Gilbert et al., 2010; Bryant
et al., 2012) but were not observed by our own analyses
of published datasets for other types of aquatic microbial
communities (Spearman rank correlation tests between
gene-based measures of functional and taxonomic rich-
ness, two-sided P > 0.9) (Parnell et al., 2010; Beazley
et al., 2012). These inconsistent outcomes raise the fol-
lowing question: Why are positive associations observed
among some types of microbial communities but not
among others? In other words, what are the likely causes
of correlated variation in functional and taxonomic rich-
ness among different microbial communities?

There are several plausible explanations for why a posi-
tive association between functional and taxonomic rich-
ness might not be observed. One explanation is that
functional redundancy might be sufficiently pervasive to
mask the expected positive association. If most taxa
within a community have functional traits that are largely
redundant with those of other taxa, then taxonomic rich-
ness would predominantly affect functional redundancy
rather than functional richness. Another explanation is
that inaccuracies in functional richness measurements
might cause false negative outcomes. One inaccuracy is
the systematic underestimation of functional richness.
Consider that many different types of functional traits dis-
tinguish different taxa and contribute towards their overall
functionality, including catabolic, anabolic, motility, regu-
lation, cell signalling, environmental sensing, resistance
and stress response traits. If functional richness measure-
ments only encompass a few types of functional traits,
such as catabolic traits, then important differences
between different taxa might be missed, which would
make it more difficult to observe the expected positive
association. Another inaccuracy is the inclusion of non-
expressed traits into functional richness measurements,
which likely occurs when using gene-based measures of
functional richness. Non-expressed traits might lead to
ecologically and biologically misleading measurements of
functional richness, which would also make it more diffi-
cult to observe the expected positive association.
Metatranscriptome sequencing could help overcome both
of these inaccuracies by generating functional richness
measurements that encompass many different types of
functional traits while excluding non-expressed traits, thus
enabling more robust tests for positive associations
between functional and taxonomic richness (Gilbert et al.,
2010).

In this study, we used metatranscriptome sequencing to
answer the following two unresolved questions about the
ecology and functioning of WWTP communities. First, are

functional and taxonomic richness positively associated
with each other among different WWTP communities?
Second, what are the likely causes of correlated variation
in functional and taxonomic richness? To address these
questions, we measured the functional and taxonomic
richness of 10 independent WWTP communities from
mRNA and 16S rRNA amplicon sequence reads respec-
tively. We then tested whether the functional and taxo-
nomic richness measurements are associated with each
other. We next tested whether the functional and taxo-
nomic richness measurements are associated with spe-
cific operational and environmental metrics of the
WWTPs. Finally, we postulated a hypothesis about the
likely relationships between the functional and taxonomic
richness measurements, and the operational and environ-
mental metrics of the WWTPs, and tested whether this
hypothesis is consistent with the functional and taxonomic
attributes of the WWTP communities.

Results

We first tested whether functional and taxonomic richness
are positively associated with each other among different
WWTP communities. We sequenced mRNAs and 16S
rRNA amplicons from 10 independent WWTP communi-
ties, assigned the mRNA sequence reads to SEED sub-
systems functional annotations or level 3 functional
categories (Overbeek et al., 2005; Meyer et al., 2008),
and assigned the 16S rRNA amplicon sequence reads to
operational taxonomic units (OTUs). We then measured
the observed functional and taxonomic richness of each
WWTP community as the observed numbers of unique
functional annotations or level 3 functional categories and
OTUs respectively (Table S1). We found that the
observed functional and taxonomic richness measure-
ments are significantly and positively associated with
each other, regardless of whether we used functional
annotations or level 3 functional categories (Fig. 1; Spear-
man rank correlation coefficients ≥ 0.67, two-sided
P < 0.05). We further tested whether ACE extrapolated
functional and taxonomic richness measurements are
also positively associated with each other (Table S1) and
found that this was also the case (Fig. S1; Spearman rank
correlation coefficients ≥ 0.67, two-sided P < 0.05). Thus,
WWTP communities that contain more taxa are indeed
more likely to have more functional traits. Based on the
consistency in the data, we used observed functional and
taxonomic richness measurements and unique functional
annotations for all further analyses (unless specified
otherwise).

We next tested whether the functional and taxonomic
richness measurements are associated with specific
operational and environmental metrics of the WWTPs
(Table S2). We found that both the functional and taxo-

2 D. R. Johnson et al.

© 2014 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology



nomic richness measurements are significantly and nega-
tively associated with the effluent ammonia-nitrogen
(NH4-N) concentrations (Spearman rank correlation coef-
ficients < −0.84, two-sided P < 0.005) and with the effluent
5-day biological oxygen demand (BOD5) concentrations
(Spearman rank correlation coefficients < −0.75, two-
sided P < 0.05) (Fig. 2). In contrast, the functional and
taxonomic richness measurements are not significantly
associated with any of the other operational or environ-
mental metrics of the WWTPs (Fig. 2). Thus, because
effluent NH4-N and BOD5 concentrations approximate to
ambient NH4-N and BOD5 concentrations in completely
mixed reactors, our results lead to the hypothesis that

correlated variation in functional and taxonomic richness
is likely related to variation in ambient nitrogen and carbon
availability.

We then reasoned that if correlated variation in func-
tional and taxonomic richness is indeed related to varia-
tion in ambient nitrogen and carbon availability, then the
functional annotations and OTUs that are responsible for
the observed variation in the functional and taxonomic
richness measurements should not be random assem-
blages. Instead, they should have additional attributes
that are also associated with ambient nitrogen and carbon
availability. To test this, we partitioned the functional anno-
tations and OTUs of each WWTP community into two
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Fig. 1. Positive associations between the observed functional and taxonomic richness measurements of 10 independent WWTP communities
(Spearman rank correlation coefficients ≥ 0.67, two-sided P < 0.05). The functional richness measurements are the observed numbers of (A)
unique SEED subsystems functional annotations or (B) unique SEED subsystems level 3 functional categories. The taxonomic richness
measurements are the observed numbers of unique OTUs.
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Fig. 2. Spearman rank correlation coefficients for the associations between the functional (black bars) or taxonomic (white bars) richness
measurements of the WWTP communities and the measured operational and environmental metrics of the WWTPs (*two-sided P < 0.05). The
functional and taxonomic richness measurements are the observed numbers of unique SEED subsystems functional annotations and OTUs
respectively. TSS, total suspended solids; Q, total daily flow rate; HRT, hydraulic retention time; SRT, solids retention time; NH4-N,
ammonia-nitrogen; BOD5, 5-day biological oxygen; COD, chemical oxygen demand.
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parts. The shared functional annotations and OTUs are
those that were observed among all 10 WWTP commu-
nities, and they therefore do not contribute to the
observed variation in the functional and taxonomic rich-
ness measurements. The non-shared functional annota-
tions and OTUs are those that were not observed among
all 10 WWTP communities (i.e. they were observed in
nine or fewer WWTP communities), and they are there-
fore solely responsible for the observed variation in the
functional and taxonomic richness measurements
(Fig. 1). Because only the non-shared functional annota-
tions and OTUs are responsible for the observed
variations in the functional and taxonomic richness meas-
urements, we analysed the non-shared functional anno-
tations and OTUs in isolation from the shared functional
annotations and OTUs. We provide complete lists of the
abundance values and the shared and non-shared des-
ignations for every functional annotation and OTU in
Tables S3 and S4 respectively.

We first reasoned that if our hypothesis is correct, then
differences in the compositions of the non-shared func-
tional annotations and OTUs across the different WWTP
communities (i.e. patterns in beta-diversity) should also
be associated with ambient nitrogen and carbon avail-
ability. To test this, we grouped the non-shared functional
annotations into level 2 functional categories as des-
cribed by Fierer and colleagues (2012). This reduced the
number of non-detection events and provided more con-
servative estimates of differences between the different
WWTP communities. We then used non-metric multidi-
mensional scaling (NMDS) (Minchin, 1987) to identify
operational and environmental metrics of the WWTPs
that associate with the compositions of the non-shared
functional annotations and OTUs. As expected, we
observed statistically significant associations with the

effluent NH4-N and BOD5 concentrations (Fig. 3; permu-
tation test, P < 0.05). We also observed significant asso-
ciations with the temperature and influent NH4-N and
BOD5 concentrations (Fig. 3), but these metrics do not
associate with functional or taxonomic richness (Fig. 2).
We next used constrained correspondence analysis
(CCA) to quantify how much of the variation in the non-
shared functional annotations and OTUs could be
explained by the effluent NH4-N and BOD5 concentra-
tions. We found that 52% (P < 0.05) and 49% (P < 0.05)
of the variation in the non-shared functional annotations
and OTUs, respectively, could be explained by the efflu-
ent NH4-N and BOD5 concentrations. This was true
regardless of whether we analysed the non-shared func-
tional annotations and OTUs alone or included the less
variable shared functional annotations and OTUs into the
analysis. Together, these results demonstrate that differ-
ences in the compositions of the non-shared functional
annotations and OTUs are indeed associated with
ambient nitrogen and carbon availability.

We additionally used partial CCA to test whether the
effluent NH4-N and BOD5 concentrations explain different
aspects of the variation in the non-shared functional anno-
tations and OTUs. We found that the effluent NH4-N and
BOD5 concentrations do not explain different aspects of
the variation (P > 0.05). This was expected given that the
oxidation of NH4 contributes to BOD5, and the effluent
NH4-N and BOD5 concentrations are therefore not com-
pletely independent measurements. To test their inde-
pendence, we performed pairwise association tests
between all of the operational and environmental metrics
of the WWTPs (Table S5). We found that the effluent
NH4-N and BOD5 concentrations are indeed significantly
associated with each other (Spearman rank correlation
coefficient > 0.8, two-sided P < 0.05) but are not associ-
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Fig. 3. Permutation tests for the associations between the NMDS ordinations of the non-shared SEED subsystems functional annotations
(black bars) or OTUs (white bars) of the WWTP communities and the measured operational and environmental metrics of the WWTPs
(horizontal dashed line; P = 0.05). TSS, total suspended solids; Q, total daily flow rate; HRT, hydraulic retention time; SRT, solids retention
time; NH4-N, ammonia-nitrogen; BOD5, 5-day biological oxygen; COD, chemical oxygen demand.
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ated with any of the other operational or environmental
metrics of the WWTPs (Table S5).

We next reasoned that if our hypothesis is correct, then
specific non-shared functional annotations involved with
nitrogen and carbon consumption should have mRNA
sequence read abundances that are also associated with
ambient nitrogen and carbon availability. To test this, we
again used the non-shared functional annotations that
were grouped into level 2 functional categories, which
reduced the number of non-detection events across the
different WWTP communities and enabled more robust
statistical tests. We then tested for associations between
the abundances of non-shared mRNA sequence reads
assigned to each level 2 functional category and the efflu-
ent NH4 and BOD5 concentrations. We provide a complete
list of the results from the statistical tests in Table S6. We
found that nine level 2 functional categories have abun-
dances of non-shared mRNA sequence reads that are
significantly associated with the effluent NH4-N concentra-
tions (absolute Spearman rank correlation coefficients
> 0.90, Benjamini–Hochberg-adjusted two-sided P < 0.05)
(Table 1). We also found that two level 2 functional catego-
ries have abundances of non-shared mRNA sequence
reads that are significantly associated with the effluent
BOD5 concentrations (absolute Spearman rank correlation
coefficients > 0.90, Benjamini-Hochberg-adjusted two-
sided P < 0.05) (Table 1). All of these associations are
negative, thus demonstrating that WWTP communities
with more non-shared mRNA sequence reads have lower
effluent NH4-N and BOD5 concentrations. While none of
these level 2 functional categories are associated with both
the effluent NH4-N and BOD5 concentrations when using
the stringent significance criteria applied in Table 1, they
are associated with both the effluent NH4-N and BOD5

concentrations when using less stringent significance cri-
teria (Table S6). This was expected given that the effluent

NH4-N and BOD5 concentrations are significantly associ-
ated with each other (Table S5).

We then examined the identities of these functional
annotations and level 2 functional categories, and asked
whether they are likely to be involved with nitrogen and
carbon consumption (Table 1). We found that this was
indeed the case. Non-shared mRNA sequence reads
assigned to the functional categories ‘glutamine, gluta-
mate, aspartate, asparagine; ammonia assimilation’ and
‘arginine; urea cycle, polyamines’ have the largest and
third largest absolute Spearman rank correlation coeffi-
cients with the effluent NH4-N concentrations respectively
(Table 1). These include mRNAsequence reads annotated
to the assimilation and metabolism of NH4 and alternative
nitrogen sources. Non-shared mRNA sequence reads
assigned to the functional category ‘membrane transport;
–’ had the second largest absolute Spearman rank corre-
lation coefficient with the effluent NH4-N concentrations
(Table 1). Twenty-one per cent of these mRNA sequence
reads are annotated to ammonia monooxygenase, which
oxidizes NH4 and contributes to BOD5. Finally, non-shared
mRNAsequence reads assigned to the functional category
‘nitrogen metabolism; –’ had the largest absolute Spear-
man rank correlation coefficient with the effluent BOD5

concentrations (Table 1). These include mRNA sequence
reads annotated to the assimilation and metabolism of a
wide variety of nitrogen sources. Together, these results
indicate that WWTP communities that synthesize more
non-shared mRNA sequence reads involved with assimi-
lating and metabolizing nitrogen sources have lower efflu-
ent NH4-N and BOD5 concentrations.

Discussion

We sought to test a basic and general prediction in
ecology: communities that contain more taxa are more

Table 1. Associations between the abundances of mRNA sequence reads assigned to specific SEED subsystems level 2 functional categories
and the effluent NH4-N and BOD5 concentrations of the WWTPs (absolute Spearman rank correlation coefficients > 0.90, Benjamini–Hochberg-
adjusted two-sided P < 0.05).

Level 1 functional category Level 2 functional category
Environmental
metric

Spearman rank
correlation coefficient Pa

Amino acids and derivatives Glutamine, glutamate, aspartate, asparagine;
ammonia assimilation

Effluent NH4-N −0.95 0.020

Membrane transport – Effluent NH4-N −0.93 0.020
Amino acids and derivatives Arginine; urea cycle, polyamines Effluent NH4-N −0.92 0.020
Motility and chemotaxis Flagellar motility in Prokaryota Effluent NH4-N −0.92 0.020
Clustering-based subsystems Clustering-based subsystems Effluent NH4-N −0.91 0.020
Regulation and cell signalling – Effluent NH4-N −0.91 0.020
Clustering-based subsystems Chemotaxis, response regulators Effluent NH4-N −0.90 0.021
Iron acquisition and metabolism – Effluent NH4-N −0.90 0.021
Nucleosides and nucleotides Purines Effluent NH4-N −0.90 0.024
Nitrogen metabolism – Effluent BOD5 −0.99 0.0028
Stress response Detoxification Effluent BOD5 −0.98 0.0082

a. Benjamini-Hochberg-adjusted two-sided P.
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likely to have more functional traits, and a positive asso-
ciation is therefore expected between functional and taxo-
nomic richness (Chapin et al., 1997; Naeem and Wright,
2003; Cadotte et al., 2011). Although a general ecological
prediction, empirical tests of this prediction are lacking for
WWTP communities and have generated inconsistent
outcomes for other types of microbial communities. We
demonstrated that functional and taxonomic richness
measurements based on mRNA and 16S rRNA amplicon
sequence reads are indeed positively associated with
each other among independent WWTP communities
(Figs 1 and S1). Thus, functional redundancy and inaccu-
racies in functional richness measurements were not
sufficiently pervasive to mask the expected positive asso-
ciation when employing the techniques used in this study.
Our results are, therefore, consistent with the hypothesis
that taxonomic richness is indeed an important ecological
determinant of functional richness.

Our approach for measuring functional and taxonomic
richness has notable strengths and limitations. An impor-
tant strength is that the functional and taxonomic richness
measurements are based on mRNA and 16S rRNA
amplicon sequence reads, respectively, rather than DNA
sequence reads. We, therefore, excluded non-expressed
functional traits and non-active taxa that might otherwise
lead to ecologically and biologically misleading measures
of functional and taxonomic richness. An important limita-
tion of our approach, however, is that our functional rich-
ness measurements were based on only those mRNA
sequence reads that could be assigned to SEED subsys-
tems functional annotations, and they therefore excluded
mRNA sequence reads that could not be assigned to
SEED subsystems functional annotations but are never-
theless of potential functional importance. Although we
cannot fully address this limitation, it is unclear how this
limitation could systematically create a false positive
outcome (i.e. how this limitation could lead to a positive
association when it does not exist). This limitation is,
therefore, unlikely to compromise our main conclusion
that WWTP communities that contain more taxa are
indeed more likely to have more functional traits.

We further postulated the hypothesis that correlated
variation in functional and taxonomic richness is likely
related to variation in ambient nitrogen and carbon avail-
ability. We demonstrated that this hypothesis is consist-
ent with the functional and taxonomic attributes of the
WWTP communities. Namely, we found that the func-
tional annotations and OTUs that are responsible for the
observed correlated variation in the functional and taxo-
nomic richness measurements are not random assem-
blages, but instead have additional attributes that are
also associated with ambient nitrogen and carbon avail-
ability. This hypothesis is also consistent with basic eco-
logical principles. Competition for available nutrients

affects functional and taxonomic richness (Egli, 1995;
Kovárová-Kovar and Egli, 1998). For example, when pre-
ferred nitrogen and carbon sources are scarce, selection
for the use of less favourable nitrogen and carbon
sources should be enhanced, thus promoting functional
and taxonomic richness. Conversely, functional and taxo-
nomic richness affect nitrogen and carbon consumption
via selection and complementarity effects (Bell et al.,
2005; Cardinale, 2011; Hernandez-Raquet et al., 2013).
The main consequence is that communities with higher
functional and taxonomic richness are more likely to
consume nitrogen and carbon sources at faster rates
and to greater extents (Bell et al., 2005; Cardinale, 2011;
Hernandez-Raquet et al., 2013), thus resulting in
reduced nitrogen and carbon availability. There is likely a
positive feedback between these two effects, where
competition for available nitrogen and carbon sources
promotes increased functional and taxonomic richness,
which in turn leads to the more complete consumption
and reduced availability of nitrogen and carbon sources.
Although our experimental design cannot disentangle the
relative contributions of these two effects, the scenario
described above is consistent with our empirical obser-
vations, where WWTP communities with higher func-
tional and taxonomic richness have lower effluent NH4-N
and BOD5 concentrations (Fig. 2), and thus lower
ambient nitrogen and carbon availability.

An additional and important outcome of our study is that
the functional and taxonomic richness measurements are
not associated with any single metric of the WWTPs that
could be operationally controlled (Fig. 2). This includes
the hydraulic and solids retention times, both of which
have been hypothesized to affect functional and taxo-
nomic richness by controlling the range of successful
growth phenotypes (Saikaly and Oerther, 2004; Clara
et al., 2005; Saikaly et al., 2005; Krakat et al., 2010). This
also includes the influent NH4-N and BOD5 concentra-
tions, which are associated with the compositions (Fig. 3)
but not the richness (Fig. 2) of the functional annotations
and OTUs. Thus, although functional and taxonomic rich-
ness are thought to be important determinants of the
overall functional performance of WWTP communities
(Fernandez et al., 2000; Hashsham et al., 2000; Cook
et al., 2006; Gentile et al., 2007; Wittebolle et al., 2008;
Werner et al., 2011; Yang et al., 2011; Hernandez-Raquet
et al., 2013), it is not clear how they could be controlled to
achieve desired performance objectives. It is plausible
that combinations of operational metrics rather than any
single operational metric could achieve control. Further
investigations of additional WWTP communities could
help identify these more complex relationships.

In conclusion, we addressed two important gaps in our
knowledge about the ecology and functioning of WWTP
communities. First, we provided empirical evidence for a
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basic and general ecological prediction: communities that
contain more taxa are more likely to have more functional
traits. Second, we provided empirical support for the
hypothesis that variation in functional and taxonomic rich-
ness is likely related to variation in ambient nitrogen and
carbon availability. This hypothesis provides a plausible
explanation for why positive associations between func-
tional and taxonomic richness were observed among
some microbial communities but not among others. Suf-
ficient variation in ambient nutrient availability among
microbial communities from a particular habitat type might
be required to prevent functional redundancy and inaccu-
racies in functional richness measurements from masking
the expected positive association. We believe that
addressing these two knowledge gaps improves our basic
understanding about the ecology and functioning of
WWTP communities.

Experimental procedures

WWTP communities and sample collection

We previously obtained 10 independent WWTP communities
from 10 different WWTPs located across Switzerland as part
of a biotransformation experiment that we reported else-
where (Helbling et al., 2012a). We selected the WWTPs in
order to obtain a group of WWTPs with substantial variation
in their operational and environmental metrics, with specific
focus on variation in total suspended solids, solids retention
time and influent source (Helbling et al., 2012a). We rea-
soned that greater variation in those metrics should corre-
spond to greater variation in specific metabolic activities. In
this study, we reasoned that greater variation in those metrics
should also correspond to greater variation in functional and
taxonomic richness, which is essential for achieving our main
objectives. We summarize the relevant operational and envi-
ronmental metrics for each WWTP in Table S2, and the
influent source and process type for each WWTP in Table S7.

We sampled all 10 WWTPs using an identical and stand-
ardized protocol (Helbling et al., 2012a). We collected 1 l of
activated sludge directly from the biological aeration basin of
each WWTP, transported the activated sludge to Eawag in a
loosely capped 2 l amber glass bottle, and added a magnetic
stir bar to the 2 l bottle immediately upon arrival at Eawag.
We then removed 1.5 ml samples 2 h later, collected cells
from the samples by centrifugation, and archived the cells at
−80°C with RNAlater (Qiagen, Hilden, Germany). The total
time from collecting the activated sludge at the WWTP to
removing the 1.5 ml cell samples was approximately 5 h.
While our sampling protocol manipulates the WWTP commu-
nities to some extent, it also enables a more direct compari-
son of the results from this study to those from our previous
study (Helbling et al., 2012a).

RNA methods

We isolated total RNA from the archived cell samples using a
conventional acid-phenol method (Johnson et al., 2005;

Helbling et al., 2012b). We removed residual DNA by DNAse
digestion using the TURBO DNA-free Kit (Applied
Biosystems, Foster City, CA, USA). We verified DNA diges-
tion by polymerase chain reaction (PCR) amplification of 16S
rRNA genes using the bacterial-specific B27F forward (5′-
AGAGTTTGATCMTGGCTCAG-3′) and 1492R reverse (5′-
TACCTTGTTACGACTT-3′) primers. We repeated DNA
digestion until 16S rRNA gene amplicons were no longer
visible by gel electrophoresis. We assessed the purities of the
digested total RNA samples using a NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific, Waltham, MS,
USA). All of the digested total RNA samples had A260/A280 and
A260/A230 ratios greater than 1.85. We assessed the integrities
of the digested total RNA samples by gel electrophoresis. All
of the digested total RNA samples had intact 16S and 23S
rRNA bands.

We enriched mRNA from the digested total RNA samples
using the MICROBExpress Bacterial mRNA Enrichment Kit
(Invitrogen, Carlsbad, CA, USA). We used a single applica-
tion because multiple applications were reported to not
provide substantial improvements (He et al., 2010). We veri-
fied mRNA enrichment by gel electrophoresis of 16S and 23S
rRNA bands, and by measuring the reductions in the masses
of total RNA using a NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific). For all of the enriched mRNA
samples, the intensities of the 16S and 23S rRNA bands were
visibly reduced, and the masses of total RNA were reduced
by 45–63%. We prepared one sequencing library for each
enriched mRNA sample using the TruSeq RNA Sample
Preparation Kit (version 2) (Illumina, San Diego, CA, USA)
and a different sample-specific multiplex adaptor. We then
pooled all 10 of the libraries together and loaded the pool
onto a single lane of a HiSeq Flow Cell (version 3) (Illumina).
We sequenced the libraries using a HiSeq2000 sequencer
(Illumina) operated by the Quantitative Genomics Facility at
ETH Zürich (Basel, Switzerland). We used single-read 150-
cycle sequencing with the TruSeq SR Cluster Kit (version
v3-cBot-HS) and the TruSeq SBS Kit (version v3-HS)
(Illumina). We performed primary data analysis with RTA soft-
ware (version 1.13.48) (Illumina). We deposited all of the
enriched mRNA sequence reads into the MG-RAST database
under project ID 6015.

We reverse-transcribed bacterial 16S rRNAs from the same
digested total RNA samples using the Superscript III First
Strand Synthesis Supermix (Invitrogen). Each 20 μl reverse
transcription reaction contained 1 μl of purified total RNA and
100 nM of the bacterial-specific B534R reverse primer (5′-
ATTACCGCGGCTGCTGGC-3′). We amplified the reverse
transcription products using the Expand High FidelityPLUS PCR
System (Roche Applied Science, Penzberg, Germany). Each
50 μl PCR reaction contained 2 μl of reverse transcription
products and 200 nM each of the bacterial-specific B27F
forward and B534R reverse primers. In addition to the target-
specific sequences, these PCR amplification primers
contained the shotgun adapter sequences required for
pyrosequencing with the 454-GS FLX platform and sample-
specific multiplex identifier sequences (Table S8). We per-
formed PCR amplification using the following thermal cycling
conditions: 5 min at 95°C; 15 cycles of 30 s at 95°C, 30 s at
55°C, and 45 s at 72°C; 10 min at 72°C. This was the minimum
number of PCR cycles needed to produce visible amplicon
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bands of the expected size after gel electrophoresis. After
PCR amplification, we pooled equivalent masses of 16S rRNA
amplicons from each of the 10 microbial communities together
and prepared a single emPCR library using the forward primer
(shotgun adapter sequence A) (Table S8) and the GS emPCR
Kit II (Roche 454 Life Sciences, Branford, CT, USA). We then
loaded the resulting emPCR products onto 1/16th region of
a 454 GS FLX Standard PicoTiterPlate (Roche 454 Life
Sciences) and sequenced the products from the forward
primer using a 454 GS-FLX sequencer (Roche 454 Life Sci-
ences) operated by GATC Biotech (Konstanz, Germany).
We deposited all of the bacterial 16S rRNA amplicon
sequence reads into the NCBI Sequence Read Archive (http://
www.ncbi.nlm.nih.gov/sra) under BioProject ID number
PRJNA232662.

Analysis of mRNA and 16S rRNA amplicon
sequence reads

We analysed mRNA sequence reads using the MG-RAST

metagenomics analysis server (version 3.2) with default
parameters for quality and length filtering (Meyer et al.,
2008). We functionally annotated the mRNA sequence reads
as described by Fierer and colleagues (2012) for DNA
sequence reads. Briefly, we compared singleton mRNA
sequence reads with the SEED database (Overbeek et al.,
2005) using BLASTX and an e-value cut-off of 1 × 10−2

(accessed on 18 May 2013). We then assigned the function-
ally annotated mRNA sequence reads to SEED subsystems
functional annotations, level 3 functional categories or level 2
functional categories (Overbeek et al., 2005) as described by
Fierer and colleagues (2012). We investigated level 3 and
level 2 functional categories because they provide more con-
servative measures of differences between different WWTP
communities. We provide a complete summary of the results
from the quality filtering, length filtering and functional anno-
tation processing steps in Table S9.

We analysed the 16S rRNA amplicon sequence reads
using the MOTHUR software (Schloss et al., 2009). We
selected flowgram files containing ≤ 1 mismatch to the mul-
tiplex identifier sequence, ≤ 2 mismatches to the target-
specific primer sequences, 0 ambiguous nucleotides, and
flows between 450 and 720. We corrected and translated the
selected flowgram files into DNA sequence reads using
PyroNoise (Quince et al., 2009), denoised the sequence
reads using AmpliconNoise (Quince et al., 2011) and
removed chimera sequence reads using UCHIME with self-
references (Edgar et al., 2011). We aligned the resulting
sequence reads to the SILVA Gold reference set (Pruesse
et al., 2007), trimmed the sequence reads to obtain compa-
rable regions, and binned the sequence reads into OTUs
using the furthest neighbour algorithm and a sequence simi-
larity level of ≥ 97%.

Functional and taxonomic richness measurements

Prior to calculating functional and taxonomic richness, we
corrected for differences in sequencing depth across the 10
WWTP communities by rarefying the functionally annotated
mRNA and 16S rRNA amplicon sequence reads to 300 000
and 2500 respectively. We measured functional richness as

described by Fierer and colleagues (2012) for DNA sequence
reads. Briefly, we measured observed functional richness as
the observed numbers of unique SEED subsystems func-
tional annotations or level 3 functional categories. We meas-
ured observed taxonomic richness as the observed numbers
of unique OTUs. We measured extrapolated functional and
taxonomic richness using the ACE richness index (Chao,
1987). We compared the observed and ACE extrapolated
richness measurements in order to assess the effect of
incomplete sequencing on the rank ordering of the functional
and taxonomic richness measurements. All of the reported
functional and taxonomic richness measurements are the
average values from 1000 independently rarefied sequence
read datasets. We performed rarefaction and calculated rich-
ness in the R environment (R Development Core Team,
2013) using functions in the vegan (Oksanen et al., 2013)
package.

Statistical and multivariate analyses

We performed all statistical and multivariate analyses in the R
environment using functions in the stats (R Development
Core Team, 2013) and vegan (Oksanen et al., 2013) pack-
ages. We used non-parametric statistical methods because
the values of some of the operational and environmental
metrics significantly deviate from a normal distribution
(Shapiro–Wilk normality tests, P < 0.05). We used two-sided
Spearman rank correlation tests to test for pairwise associa-
tions among the functional richness measurements (Table
S1), the taxonomic richness measurements (Table S1), the
operational and environmental metrics of the WWTPs (Table
S2), and the abundances of functionally annotated mRNA
sequence reads (Table S3). We used the Benjamini–
Hochberg method to account for multiple comparisons
(Benjamini and Hochberg, 1995).

We used NMDS (Minchin, 1987) to compare the differ-
ences in the compositions of functional annotations and
OTUs. We performed NMDS using Bray–Curtis distances
and log-transformed abundances of mRNA and 16S rRNA
amplicon sequence reads. We used the envfit function with
999 permutations to test the significance of the associations
between the NMDS ordinations and the operational and envi-
ronmental metrics of the WWTPs (Table S2) (Oksanen et al.,
2013). When values of specific operational and environmen-
tal metrics were missing, we performed NMDS and permuta-
tion tests with only those WWTPs that had non-missing
values.

We used CCA and partial CCA to quantify the amount of
variation in the compositions of the functional annotations
and OTUs that could be explained by the effluent NH4-N and
BOD5 concentrations. We performed CCA and partial CCA
using log-transformed abundances of mRNA and 16S rRNA
amplicon sequence reads. We used the anova function from
the vegan package to test the significance of the constraints
(Oksanen et al., 2013). We performed CCA and partial CCA
with only those WWTPs that had measurements for both the
effluent NH4-N and BOD5 concentrations (Table S2). We addi-
tionally performed CCA and partial CCA using shared and
non-shared designations based on all 10 WWTP communi-
ties or based on only those WWTP communities for which we
had both effluent NH4-N and BOD5 measurements. The CCA
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and partial CCA results are qualitatively similar for both
cases, and we therefore only report the results when using
the shared and non-shared designations based on all 10
WWTP communities.
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