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a b s t r a c t

This study aims to develop a new field-based approach that can estimate patterns of groundwater
pollution sensitivity using data mining algorithms. Hydrogeological and pollution sensitivity data were
collected from the Woosan Industrial Complex, Korea, which is a site contaminated by trichloroethylene
(TCE). The proposed data mining algorithm procedure uses seven hydrogeological properties as input
variables: depth to water, net recharge, aquifer media, soil media, topography, vadose zone media, and
hydraulic conductivity. The observed TCE sensitivity was used as the target data. Initially, four data
mining algorithms artificial neural network (ANN), decision tree (DT), case-based reasoning (CBR), and
multinomial logistic regression (MLR) were tested. We found that the DT-based data mining and rule
induction method shows better prediction accuracy and consistency than the other methods. We also
used the ordinal pairwise partitioning (OPP) algorithm to improve the accuracy and consistency of the DT
model. A classification and regression tree (CART) analysis of the OPP-DT model indicated that the net
recharge (R), soil media (S), and aquifer media (A) were the major hydrogeological factors that influence
groundwater sensitivity to TCE at the site. The results of this study demonstrate that the proposed model
can provide more accurate and consistent estimates of groundwater vulnerability to TCE compared to the
existing models.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The intensive industrial use of chlorinated solvents, such as
trichloroethylene (TCE), has caused these chemicals to be the most
frequently detected type of groundwater contamination (USEPA,
2003; Rivett et al., 2014). TCE is highly carcinogenic to animals
(USEPA, 2005), and its presence in groundwater is a substantial and
considerable concern to human health (USEPA, 2003, 2005, 2006).
Because TCE is a non-aqueous phase liquid (NAPL) with a density
heavier than water, its introduction to the subsurface environment
may result in the presence of persistent NAPL residuals in the un-
saturated zone or weathered/fractured rocks and may cause verti-
cal spreading of the groundwater contamination plume (Jackson,
1998; Chambers et al., 2004; Rivett et al., 2014). For long-term
contaminated sites, the locations of NAPL residuals are generally
: þ82 2 312 5798.
difficult to determine. Because of the complex and problematic
nature of TCE groundwater contamination, the remediation of
long-term TCE-contaminated groundwater in a weathered/frac-
tured rock environment is regarded as one of the most difficult
remedial tasks.

Groundwater TCE contamination in the Woosan Industrial
Complex in Wonju (Gangwon Province, South Korea) is a model
case of long-term TCE-contaminated groundwater in a weather/
fractured rock environment (EMC, 2003; Yang et al., 2003; KECO,
2008; Baek and Lee, 2011; Yang et al., 2012). In 1995, a significant
amount of TCE NAPL was accidentally released into the subsurface
environment at a location on the site. In the early phase, the
groundwater was contaminated with high levels of TCE (unde-
tected to 10 mg/L) that exceed the Korean Groundwater Quality
Standard (TCE < 0.03 mg/L). After pump-and-treatment methods
were used in 2003, the groundwater appeared to be clean. How-
ever, since 2006, TCE has re-appeared in the groundwater (KECO,
2008; Baek and Lee, 2011; Yang et al., 2012). Recent field studies
suggest that the re-appearance of TCE in groundwater might be
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attributable to the presence of TCE NAPL residuals at the site (KECO,
2008; Baek and Lee, 2011; Yang et al., 2012; Rivett et al., 2014).
Unidentified locations of multiple TCE NAPL residuals and hydro-
geological complexity and heterogeneity in long-term TCE-
contaminated sites may impair decision making with respect to
planning groundwater protection and remediation (Rivett et al.,
2012).

The estimation of groundwater pollution vulnerability (or
sensitivity) is an important factor when prioritizing the planning of
groundwater conservation and contaminant remediation actions
(Gogu and Dassargues, 2000). Theoretically, groundwater vulner-
ability to a contaminant can be directly measured via the field
observation of changes in contaminant concentration. However,
such direct measurement is not practical due to its relatively high
cost. Instead, index models and/or deterministic process-based
models are generally used to estimate groundwater contamina-
tion sensitivity based on the available hydrogeological information
of a site and/or the chemical and source characteristics of the
groundwater contaminants (Aller et al., 1987; Dixon, 2005). In the
Woosan Industrial Complex case study, the data on the temporal
and spatial distributions of groundwater TCE concentrations were
insufficient for deterministic process-based modeling (EMC, 2003;
KECO, 2008; Baek and Lee, 2011), and model parameters for sorp-
tion, advection, and bulk density were not independently
measured. These limitationsmake it difficult to use a process-based
model to estimate the groundwater contamination sensitivity of
the site. This difficulty is also generally true for other groundwater
contamination field studies. In fact, only a very limited number of
studies have completed detailed field characterizations to examine
the temporal/spatial distribution of TCE contaminants near a
localized source zone (Yang et al., 2012; Rivett et al., 2014). As an
alternative, the DRASTIC model was developed by the U.S. Envi-
ronmental Protection Agency (EPA) to evaluate the groundwater
contamination potential for the entire United States (Aller et al.,
1987). This model is based on the concept of the hydrogeological
setting, which is defined as a composite description of all the major
geologic and hydrologic factors that affect and control the
groundwater movement into, through and out of an area (Aller
et al., 1987). The acronym represents seven hydrogeological pa-
rameters taken into consideration in the evaluation procedure, as
noted in Table 1. Each DRASTIC parameter is evaluated with respect
to the others in order to determine the relative importance of each
Table 1
Summary of TCE concentrations and their corresponding hydrogeological properties at t

(a) Target variable (N ¼ 114)

Variables Unit Mean

TCE mg/L 0.14

(b) Input variables (N ¼ 114)

Variables Weight Unit Classified compositions

D(Depth to water) 5 m Continuous numeric variable
R(Net recharge) 4 %
T(Topography) 1 %
C(Hydraulic conductivity) 3 cm/sec

A(Aquifer media) 3 NAa Weathered Metamorphic/Ign
Coarse sand and silt
Sandstone

S(Soil media) 2 NAa Sand and Concrete
Sandy Loam
Silty Loam

I(Impact of the vadose zone) 5 NAa Sand and Gravel with signifi
Metamorphic/Igneous
Sand and Gravel

a Indicates non-available.
and is then assigned a relativeweight, ranging from1 to 5. Themost
significant parameters are given a weight of 5, while the least sig-
nificant receive a weight of 1. The DRASTIC Index is then computed
by applying a linear combination of all factors according to the
following equation:

DRASTIC Index ¼ DrDwþ RrRwþ ArAwþ SrSwþ TrTw

þ IrIwþ CrCw

where the subscripts r and w are the corresponding ratings and
weights, respectively.

The DRASTIC model (a representative index model [Aller et al.,
1987]) was developed for hydrogeologically simple North Amer-
ican aquifers and may not be suitable for the complex and het-
erogeneous hydrogeological characteristics of the Woosan
Industrial Complex site. Recently, data mining and rule induction
approaches are frequently used to predict previously unknown
events using already-available information. Data mining is poten-
tially applicable in groundwater contaminant sensitivity analyses
based on available hydrogeological information (Fijani et al., 2013;
Pacheco et al., 2015). Decision Tree (DT)-based rule induction may
be a suitable data mining option for predicting groundwater
contamination sensitivity because it can be feasibly applied when
only a small size of data are available, when sufficient knowledge of
cause-and-effect relationships is lacking, and when complex
nonlinear relationships exist in the available dataset (Singh and
Datta, 2007; Kim et al., 2011; Ahn et al., 2012). In addition, rule
induction that involves training with the relationships between
measured independent and dependent variables can be used in
identifying key independent variables influencing dependent var-
iable values and in predicting previously unmeasured dependent
variable values using their corresponding independent variable
values (Breiman et al., 1984; Berry and Linoff, 2004). The suggested
applicability of DT and rule induction in groundwater contamina-
tion sensitivity has yet to be evaluated.

In this study, the research objectives were (i) to evaluate the
validity of use of DT and rule induction in predicting groundwater
TCE sensitivity using hydrogeological input variables for a TCE-
contaminated site and (ii) to develop a method for identifying
key hydrogeological input variables influencing the groundwater
TCE sensitivity of a study site. Using the results from the second
he study site.

Max Min Std. Dev.

3.50 0 0.81

Mean Max. Min. Std. Dev.

s 6.54 13.65 2.04 2.43
7.30 12.85 2.17 3.18
1.55 5.00 0.50 1.52
3.90 � 10�3 6.06 � 10�2 5.30 � 10�4 0.22

Total composition (%)
eous 50.36

28.38
21.26
57.34
30.22
12.44

cant Silt and Clay 30.00
47.54
22.46



Fig. 1. Location of the Woosan Industrial Complex area. The groundwater wells at the study site are shown. The TCE spill location, which is regarded as the primary source of TCE
contamination, is also shown by (X).
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objective, this study attempted to determine the location(s) of the
potential TCE NAPL residuals.
Fig. 2. Histogram of the classified absolute TCE sensitivity data. The values of the
absolute TCE sensitivities were sorted from low to high (zero to two).
2. Materials and methods

2.1. Study site

The study site is located in an industrial complex inWonju City,
located approximately 75 km east of Seoul, the capital of the Re-
public of Korea (Fig. 1). The study site is approximately 0.65 km2

and contains approximately 40 public, commercial, and residen-
tial buildings. The study site is surrounded by low-relief moun-
tains to the west and a stream to the east that has a meanwidth of
40 m and flows to the north. Thirty groundwater pumping wells
for industrial and domestic purposes were previously located on
the study site, but 18 wells were closed because of TCE contami-
nation, leaving only 12 pumps remaining in operation in 2004
(EMC, 2003; KECO, 2008). The aquifer at this site consists of
weathered and fractured Jurassic biotite granite overlain by soil
and alluvial deposits that are 10e15 m thick (EMC, 2003; KECO,
2008; Baek and Lee, 2011).

The alluvial deposits consist primarily of two types of sedi-
ments: silty sand and coarse sand. The subsurface geologic prop-
erties of the western and eastern regions of the study site are
significantly different. Steep slopes exist in the western part of the
study site, and gentle slopes exist in the eastern part. Most of the
wells in the western part are located in a weathered granite aquifer
at depths of greater than 20 m. An asphalt laboratory is situated on
a hill in the western mountains and is regarded as the primary
source of contamination (Fig. 1). The highest TCE levels were found
at this location in the soil and groundwater survey (EMC, 2003;
KECO, 2005; KECO, 2008). Groundwater generally flows from the
west (the mountainous area) to the east (the stream). The hydraulic
gradients are steeper in the west and gentler in the east near the
stream (EMC, 2003; KECO, 2008). The water levels are higher in the
wet season (June to early September) relative to the dry season
(November to early May), but the flow directions and hydraulic
gradients were largely unaffected by the season (EMC, 2003; KECO,
2008).
2.2. Data collection and preprocessing

TCE concentration data and hydrogeological properties were
taken from previous groundwater contamination surveys con-
ducted by the Wonju Environmental Management Corporation



Fig. 3. Conceptual schemes of the data mining methods used in this study: the structure of CART process in DT (A), ANN process (B), MLR process (C), and CBR process (D).
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(EMC) and the Korea Environment Corporation (KECO) (EMC,
2003; KECO, 2005; KECO, 2008). The TCE contamination data
were collected from available wells three times in 2003, 2004,
and 2008: 44 samples in February, 21 samples in April and 49
samples in August. The obtained data locations are shown
in Fig. 1.

This study focused on seven hydrogeological properties
(Depth to water [D], Net recharge [R], Aquifer media [A], Soil
media [S], Topography [T], Impact of vadose zone media [I], and
Hydraulic conductivity [C]) that are also considered in the
DRASTIC method (Aller et al., 1987; Fijani et al., 2013; Mair and
El-Kadi, 2013; Rodriguez-Galiano et al., 2014). These hydro-
geological properties have been widely used by researchers in
data mining models to assess groundwater vulnerability and
sensitivity (Dixon, 2005; Fijani et al., 2013; Mair and El-Kadi,
2013; Rodriguez-Galiano et al., 2014). The D, A, I, and C data
for the study site were obtained from EMC and KECO ground-
water survey reports (EMC, 2003; KECO, 2005; KECO, 2008). The
R data were calculated via the SCS-CN method (Mishra and Singh,
2003) using soil type data from the Korean Soil Information
System [KSIS] (http://soil.rda.go.kr/) and the Korea Environ-
mental Geographic Information System [KEGIS] (http://egis.me.
go.kr/egis/) and precipitation data from the Wonju meteorolog-
ical station. The S and T data were also obtained from the EMC
and KECO reports and the KSIS and KEGIS web databases. Table 1
is a summary of the TCE concentrations and hydrogeological
properties for all the data collected within the study site in 2003,
2004, and 2008.

For data normalization, the minemax normalization method
was used in this study (Eq. (2.1)). This method is the simplest
normalization technique and is widely used in statistical pro-
cedures (Huber, 1981; Breiman et al., 1984).

http://soil.rda.go.kr/
http://egis.me.go.kr/egis/
http://egis.me.go.kr/egis/


Fig. 4. Comparison of the hit rate results of different data mining and DRASTIC
methods. The Y-error bar indicates the normalized standard deviation. OPP-DT denotes
ordinal pair-wise partitioning applied with a DT. Class 1, Class 2, and Class 3 represent
low, medium, and high TCE sensitivity, respectively.
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V0 ¼
�

V �min
maxþmin

�
(2.1)

where v indicates the raw spectral value; min and max are the
minimum and maximum values of the dataset, respectively; and V0

represents the normalized value.
Because the TCE concentrations in this study changed over time

in 2003, 2004, 2008, the variations in the TCE concentrations were
calculated according to the time recorded at the TCE sampling well
point. This valuewas then used as a quantitativemeasure of the TCE
sensitivity. This TCE sensitivity was calculated using Eq. (2.2).
Additionally, to focus on the quantitative degree (low to high) of
TCE variations according to the time interval, absolute TCE sensi-
tivity data, as calculated by Eq. (2.3), were also used in this study.

TCE sensitivity ¼
�
Ciþ1 � Ci

Ci

�
(2.2)

where Ciþ1 and Ci correspond to the TCE concentrations at same
sampling well points at different times.

The absolute TCE sensitivity was calculated using Eq. (2.3):

Absolute TCE sensitivity ¼ jTCE sensitivityj (2.3)

In this study, the calculated absolute TCE sensitivity values were
converted into discrete values, and the TCE sensitivity data were
grouped into three categories (Pal and Mather, 2003; Kim et al.,
2011). The values of the absolute TCE sensitivity were sorted from
low to high (from zero to two), with the data in the 0e33 percen-
tiles (low) grouped into Class 1; the data in the 33e66 percentiles
(moderate) grouped into Class 2; and the data in the 66e100 per-
centiles (high) grouped into Class 3 (Fig. 2). Class 3 represents a
dramatic increase or decrease in TCE variations over time, Class 2
represents general variations in TCE concentrations over time, and
Class 1 indicates relatively little variation in TCE concentrations
over time at a study site.

2.3. Data mining model application

In this study, to estimate the groundwater pollution sensitivity
to TCE contamination, four representative data mining methods e
DT, ANN, MLR, and CBR e were applied. These methods have suc-
cessfully predicted the specific vulnerability or pollution risk of an
aquifer in many previous studies (Eisenberg and McKone, 1998;
Pesch et al., 2008; Zhang et al., 2008; Vega et al., 2009; Cho et al.,
2011; Ahn et al., 2012; Fijani et al., 2013).

The four proposed data mining procedures used the seven
hydrogeological properties as independent variables and discrete
values of TCE sensitivity as the dependent variable. The rating
and weight values from the DRASTIC model were not considered
in this study, but the seven hydrogeological parameters from the
DRASTIC model were used in the data mining. To apply the CART
method in DT to this study, seven properties (D, R, A, S, T, I, and C)
were used as independent variables, TCE sensitivity data were
used as dependent variables, and the Gini index was used to
determine the dataset. A generic illustration of the CART output
is presented in Fig. 3(a). To apply the ANN method in this study,
seven neurons (D, R, A, S, T, I, and C) were used in the indepen-
dent layer, three neurons were used as the hidden layer, and one
neuron (TCE sensitivity) was used as the dependent layer (Fijani
et al., 2013). The traditional process involved in ANNs can be
represented by a schematic learning process, as shown in
Fig. 3(b). To apply the MLR method in this study, seven properties
(D, R, A, S, T, I, and C) were used as the independent variables, and
the TCE sensitivity data were used as the dependent variables.
The traditional process involved in the MLR method can be
represented by a schematic cycle, as shown in Fig. 3(c). To apply
the CBR method in this study, seven properties (D, R, A, S, T, I, and
C) were used as the independent variables, and the TCE sensi-
tivity data were used as the dependent variables. The traditional
process involved in the CBR method can be represented by a
schematic cycle, as shown in Fig. 3(d).

In this study, the SAS Enterprise Miner (SAS Institute Inc.,
Cary, NC, USA, 2009) was used for the data mining learning (SAS,
2009). The cross-validation technique was also used in this
research (Cawley and Talbot, 2003; Dixon, 2005; Chang et al.,
2013). To examine the stability of the data mining models, 10-
fold cross-validation was executed and the entire procedure
was repeated 100 times. To evaluate the performance of the data
mining models, the data were partitioned into a training set (70%
of the dataset for each class) and a testing set (the remaining 30%
of each dataset). The training set was used to determine an
optimal value from one or more predictors during the learning
phase of data mining. The testing set was used to evaluate the
optimal value by verifying the prediction accuracy of the target
data (TCE sensitivity data).

To improve the performance of the data mining results, the
Ordinal Pairwise Partitioning (OPP) method was applied in this
study (Kwon et al., 1997; Huang and Moraga, 2004; Kim et al.,
2011; Park et al., 2011). The OPP method uses a partitioning
approach with the format of (N) and (remaining classes). The
goal of the OPP approach is to partition the dependent variable
dataset into sub-datasets with reduced classes in an ordinal and
pairwise manner according to the output classes (Kwon et al.,
1997; Huang and Moraga, 2004; Kim et al., 2011; Park et al.,
2011). In the case of a three-class scenario, the OPP method
separates Class 1 from the remaining classes, and Classes 2 and 3
are then separated with the remaining data.

2.4. Performance criteria for classification

To evaluate the performance of a classification model, the
performance measures based on the values of the confusion
matrix generally include hit rate, accuracy, capture rate, and lift
rate (Sokolova and Lapalme, 2009; Kim and Chang, 2011). The hit
rate is an assessment criterion to compare the performance of
the classification models (Sokolova and Lapalme, 2009; Kim and
Chang, 2011; Kim and Moon, 2012). The hit rate is also widely



Fig. 5. One example of a CART based tree analysis result. Each node is labeled with each class, training cases, and the number (N) of data samples in that group. The model is read
from top down until terminal nodes appear. Influential variables are presented in parentheses at each root node to split. (A) indicates the result classifying class 1 from the others,
and (B) indicates the result classifying classes 2 and class 3.



Table 2
Summary of the tree analysis from the OPP-DT method. Each ratio indicates the
number of times each independent variable was regarded as the most influential
variable in classifying the TCE sensitivity in the root node after 100 times runs.

Most influential variable classifying TCE
sensitivity data

Class 1 vs Class 2 and 3 Class 2 vs Class 3
Hydrogeology Properties D 9% 11%

R 22% 20%
A 25% 20%
S 19% 13%
T 6% 7%
I 11% 19%
C 8% 10%
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used to quantify the predictive power of models (Duman et al.,
2012). In this study, the predictive accuracy of the proposed
data mining models was assessed by dividing the number of
correctly predicted cases by the total number of given cases in a
given situation. The hit rate can be calculated as follows
(Eq. (2.4)):
Hit rate ¼ case of correct classification
total of ðcase of correct classificationþ case of misclassificationÞ (2.4)
3. Results

3.1. Evaluation of different data mining methods

Fig. 4 summarizes the comparative performance results for the
different data mining methods used in this study. According to the
hit rate results, the CBR and DT approaches outperformed the ANN
and MLR approaches. The CBR and DT methods provided a higher
hit rate (overall value: 63% of CBR, 60% of DT) and consistency
(3.0e5.2) than theMLR (overall value: 38%) and ANN (overall value:
45%). In addition, the standard deviations (Y-axis error bars) for the
ANN and MLR approaches were larger than those for the other
methods. Generally, the ANN is a robust nonlinear classifiermethod
Table 3
One-way ANOVA results for the hydrogeological properties corresponding to the Classes

Hydrogeological parameters

D (m)
(Depth to water)

Mean
Std. Dev.

R (%)
(Net recharge)

Mean
Std. Dev.

T (%)
(Topography)

Mean
Std. Dev.

C (cm/sec)
(Hydraulic conductivity)

Mean
Std. Dev.

A (NA)a

(Aquifer media)
Weathered rock
Coarse sand and silt
Sandstone

S (NA)a

(Soil media)
Sand and concrete
Sandy loam
Silty loam

I (NA)a

(Impact of vadose zone)
Sand/Silt/Clay
Metamorphic/Igneous
Sand and gravel

a Indicates not available.
that provides satisfactory performance (Berry and Linoff, 2004;
Zhang et al., 1998; Wong and Selvi, 1998; Maier and Dandy,
2000). In this study, however, our dataset was too limited to
apply an ANN. For an ANN to provide satisfactory accuracy, at least
500e1000 training data samples are required (Anthony and
Bartlett, 2002; Berry and Linoff, 2004; Sarangi and Bhattacharya,
2005; Liu and Jiang, 2013). However, only 114 data were used in
this study. Furthermore, if only a small number of data are used for
ANN training, an appropriate model is difficult to construct,
resulting in over-fit problems in the predictions (Anthony and
Bartlett, 2002; Sahiner et al., 2008). The MLR approach may also
be infeasible or inappropriate for small sample sizes. Bull et al.
(2002) noted that a limitation of the MLR method is its increased
bias associatedwith small sample sizes. Our results suggest that the
ANN and MLR approaches were not suitable for assessing the TCE
vulnerability at the study site because of the small sample size.

The accuracies and coherencies of the DT and CBR approaches
were equally higher than those for ANN and MLR. When OPP was
applied to both approaches, their accuracies improved (Fig. 4). In
DT, a rule between the input variables and target variable can be
induced, whereas rule induction is not possible in CBR (Breiman
et al., 1984; Eisenberg and McKone, 1998; Shin and Han, 1999;
Berry and Linoff, 2004; Zhang et al., 2008; Kim et al., 2011).
Because the OPP-DT approach outperformed the other tested data
mining methods, it was selected as the optimal rule induction
method for groundwater TCE sensitivity.

3.2. Identification of influential hydrogeological input variables

To induct a rule between the hydrogeological input variables
and the target variable (TCE sensitivity), a CART-based tree analysis
was conducted in this study. An example of the CART-based tree
analysis results is shown in Fig. 5. The aquifer media (A) was
identified as the most influential variable in the root node for
1 and 3 of the TCE sensitivity data in the training set.

TCE sensitivity P Value

Class 1 Class 3

5.03
2.49

6.22
2.20

0.596

5.12
2.10

7.87
3.34

0.037

1.63
1.17

1.35
0.91

0.620

3.72 � 10�3

0.01
5.19 � 10�3

0.01
0.342

Ratios (%)
0.52 0.31 0.023
0.30 0.41
0.18 0.28
0.61 0.39 0.031
0.30 0.58
0.09 0.13
0.28 0.12 0.077
0.67 0.70
0.05 0.18



Fig. 6. The distribution of groundwater TCE sensitivity in Woosan Industrial Complex. Red points indicate high TCE sensitivity wells (TCE sensitivity 3), Orange points indicates
medium TCE sensitivity wells (TCE sensitivity 2), and Black points indicate low TCE sensitivity wells (TCE sensitivity 1). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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separating Class 1 from Classes 2 and 3, and the net recharge (R)
was identified as the most influential variable in the root node for
separating Class 2 from Class 3 (Fig. 5). To examine the coherency in
the identification of the most influential input variables, 100 sub-
sets of hydrogeological input variable data and target variable data
(TCE sensitivity) were randomly selected, and their CART-based
tree analyses were individually performed to identify the most
influential input variables, similar to the example in Fig. 5. The net
recharge (R), aquifer media (A), and soil media (S) highly influenced
the TCE sensitivity in the separation of Class 1 from Classes 2 and 3,
and net recharge (R), aquifer media (A), and impact of vadose zone
(I) highly influenced TCE sensitivity in the separation of Class 2
from Class 3. Therefore, net recharge and aquifer media were the
hydrogeological input variables that most influenced the TCE
sensitivity in the site. Additionally, soil media and impact of vadose
zone represent secondary influences.

To examine whether and how the hydrogeological characteris-
tics are different between the Class 1 and Class 3 TCE sensitivity
regions, a one-way analysis of variance (ANOVA) was conducted for
the hydrogeological input variables (Table 3). The R, A, and S vari-
ables for the high-sensitivity (Class 3) regions were significantly
different from those for the low-sensitivity (Class 1) regions (p-
values <0.05). Net recharge values associated with the high-
sensitivity regions were higher than those of the low-sensitivity
regions. The aquifer media compositions in the high-sensitivity
regions tended to feature less weathered rock and more course
sand/silt and sandstone than for the low-sensitivity regions. The
soil media compositions in the high-sensitivity regions tended to
feature more sand/concrete and less sand/silty loam than the low-
sensitivity regions. Unlike the results in Table 2, the values of the
impact of vadose zone were not significantly different between the
high and low TCE sensitivity regions. The other hydrogeological
input variables (depth to groundwater table [D], topology [T], and
hydraulic conductivity [C]) did not differ significantly between the
high and low TCE sensitivity regions, a finding that is consistent
with the conclusions based on Table 2.

4. Discussion

In this study, the groundwater sensitivity of the aquifer in the
Woosan Industrial Complex to TCE contamination was assessed
using a data mining approach. The DT and rule induction ap-
proaches exhibited a relatively high capacity to predict TCE sensi-
tivity based on a limited dataset. These predictions were used to
examine the temporal/spatial distributions of TCE contaminants in
a real field site. The accuracy and consistency of the DT model were
improved by using an additional OPP algorithm. In addition, the key
hydrogeological parameters from the DRASTIC method, such as
aquifer media, soil media, and recharge, which influence the
groundwater TCE sensitivity, were successfully identified using the
DT and rule induction approaches. The DT and rule induction ap-
proaches better reflect the characteristics of a heterogeneous
aquifer, and the potential TCE NAPL residuals were successfully
located in the Woosan Industrial Complex.

According to recent studies (Yang et al., 2012, 2014; Kaown et al.,
2014), variations in the TCE concentrations at the Woosan Indus-
trial Complex site appear to be influenced by leaching of residual
DNAPL TCE trapped in the unsaturated zone. In addition, these
studies suggest that DNAPL can migrate vertically through the
unsaturated zone and be transported to the water table due to the
presence of a good recharge area and concentrated summer pre-
cipitation events. During this transport, a portion of the DNAPL TCE
may reach the saturated formation (Jo et al., 2010; Yang et al., 2012,
2014). Because the density of DNAPL is higher than water, it
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penetrates into the saturated aquifer media until it meets an
impermeable layer. TCE is also highly absorbent, obstructing
groundwater flow in the aquifer and vadose media. Consequently,
aquifer and vadose zone media are influential factors in the CART-
based tree analysis of the study site.

Previous studies (Baek and Lee, 2011; Jo et al., 2010; Yang et al.,
2012) have strongly suggested that this study site is heavily influ-
enced by seasonal precipitation patterns and hydrogeological
characteristics. In particular, because of the presence of a limited
recharge area and concentrated summer precipitation events,
groundwater recharge is an important hydrogeological factor in the
groundwater TCE sensitivity at the Woosan Industrial Complex.
Spatial and/or temporal variations in the recharge patterns due to
variations in the surface conditions can be inferred from observed
TCE concentration levels. Previous studies' results correspond to
our CART-based tree analysis results, as shown Tables 2 and 3 This
study site primarily consists of fractured granitic bedrock, which is
overlain by weathered rock, coarse sand, and silt (Jo et al., 2010;
Baek and Lee, 2011; Yang et al., 2012). As revealed in the CART-
based tree analysis results (aquifer media results in Table 3), the
aquifer and vadose zone areas associated with the Class 3 TCE
sensitivity data are underlain by extremely coarse sand and silt and
sandstone-bearing vertical fractures, unlike the areas associated
with the Class 1 TCE sensitivity data. Clearly, these geologic features
of the Class 3 areas can enhance the vertical TCE movement in the
saturated zone. The soil media results in Table 3 also indicate that
areal heterogeneities in the surface conditions might play an
important role in classifying influential variables in our tree ana-
lyses with the exception of the nearby TCE spill location. The sur-
face of the study site is largely covered by concrete pavement,
which prevents precipitation from directly infiltrating the subsur-
face. In particular, the wells categorized as Class 3 TCE sensitivity
(red points in Fig. 6) have relatively good conditions for surface
infiltration, including sloped forests and grassy areas. However, the
wells categorized as Class 1 TCE sensitivity were largely surrounded
by impermeable concrete and paved surface conditions (black
points in Fig. 6). The remaining Class 2 wells (orange points in
Fig. 6) feature mixed surface media with both high- and low-
infiltration conditions.

The results of our CART-based tree analysis indicate that the
high TCE sensitivity areas (Class 3 areas) have a finer aquifer media
texture and better soil media infiltration conditions than the low
TCE sensitivity areas. These geologic conditions are believed to
strongly affect the groundwater recharge ability. Thus, the p-values
of the net recharge results in Table 3 are significantly different
between the areas associated with TCE sensitivity Classes 1 and 3.
Based on the CART-based tree analysis, the DT and rule induction
approaches better reflect the hydrogeological conditions at the
study site and correlate well with the current available knowledge
from previous studies (Jo et al., 2010; Baek and Lee, 2011; Yang
et al., 2012).

In this study site, the main source and contaminant plumes
were definitively identified from the aqueous phase concentration
data and historical field-measured data (Jo et al., 2010; Baek and
Lee, 2011). Our DT and rule induction results showed that certain
wells located in the industrial complex, e.g., GW11, GW12, GW, 19,
MW5, and MW 19, were determined to have a TCE sensitivity of
Class 3 (Fig. 6). These Class 3 wells feature relatively unfavorable
hydrogeological conditions due to limited recharge rates and paved
surface conditions. This result suggests that TCE contaminant
plumes may be transported by rainfall events in areas with rela-
tively good surface infiltration conditions near the source area.
Then, the TCE plumes migrate vertically through the unsaturated
zone and are transported laterally from major source through the
water table and saturated zone to down-gradient wells in the
industrial complex. The groundwater flow direction is predomi-
nantly from west to east in the industrial complex area (Fig. 6).
According to previous studies (Yang et al., 2012, 2014), high TCE
concentrations were observed in the uppermost level. The
observed dramatic decrease in TCE concentration with depth sug-
gests that the source of the TCE is at or above the water table. This
conclusion implies that the residual or free phase of the TCE con-
taminants preferentially exists near the water table and acts as a
continuous source of aqueous-phase contaminants to the down-
gradient wells. Yang et al. (2012) showed that the wells GW11,
GW12, and GW19 were small TCE contaminant sources and that
their source locations can be successfully identified with the
combined use of seasonal impact analysis, a historical approach,
and chemical fingerprinting tests.

Based on the results obtained from the tree analyses with sta-
tistical significance, this study successfully identified the key
hydrogeological parameters e net recharge (R), aquifer media (A),
and soil media (S) e that affect both large- and small-scale varia-
tions in the TCE sensitivity. Groundwater recharge plays an
important role in TCE contamination with areal heterogeneity in
the surface condition. In addition, highly weathered and fractured
rocks hosting the aquifer can facilitate vertical TCE movement and
form an extensive DNAPL plume. Our findings agreewell with those
of a recent study. Although the identification of these influential
hydrogeological parameters may be relevant only for TCE-
contaminated sites with hydrogeological properties similar to
those of the Woosan Industrial Complex, the concept and frame-
work used in this study can be applied to other types of aquifers
with other contaminants. In particular, the DT and rule induction
approaches are demonstrated to be more effective than other data
mining algorithms when the available dataset is relatively small
and features a high degree of nonlinear complexity. This finding has
significant implications for environmental information research.
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