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Microorganisms, the most diverse group of life on Earth1, 
play crucial roles in the biogeochemical cycling of carbon 
(C), nitrogen (N), sulfur (S), phosphorus (P) and vari-

ous metals. Unravelling the mechanisms that generate and under-
lie microbial biodiversity is key to predicting ecosystem responses 

to environmental changes2 and improving bioprocesses, such as 
wastewater treatment and soil remediation3. With recent advances 
in metagenomic technologies4, microbial biodiversity and distri-
bution are being intensively studied in a wide variety of environ-
ments5–7, including the human gut, oceans, fresh water, air and soil. 

Global diversity and biogeography of bacterial 
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Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environ-
mental health. However, the diversity of microorganisms and the factors that control it are poorly understood. Using a system-
atic global-sampling effort, we analysed the 16S ribosomal RNA gene sequences from ~1,200 activated sludge samples taken 
from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities 
contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated 
sludge has a small, global core bacterial community (n = 28 operational taxonomic units) that is strongly linked to activated 
sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwa-
ter populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. 
Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal and 
drift), although deterministic factors (temperature and organic input) are also important. Our findings enhance our mechanis-
tic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecol-
ogy framework and have important implications for microbial ecology and wastewater treatment processes.
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However, we are just beginning to understand the diversity and 
biogeography of microbial communities in wastewater treatment 
plants (WWTPs)3,8.

More than 300 km3 of wastewater is produced globally each 
year9. This volume equals one-seventh of the global river volume10. 
About 60% of this wastewater is treated before release, and biologi-
cal processes such as activated sludge are widely used in WWTPs9. 
Activated sludge employs microbial flocs or granules to remove C, 
N, P, micropollutants (for example, toxins, pesticides, hormones 
and pharmaceuticals) and pathogens11. Activated sludge relies on 
complex and incompletely defined microbial communities. As the 
largest application of biotechnology in the world12, activated sludge 

is a vital infrastructure of modern urban societies13. Despite recent 
advances in our understanding of the microbial ecology of activated 
sludge14–16, the global picture of microbial diversity and distribution 
remains elusive. This information is essential for resolving con-
troversies concerning the relative importance of stochastic versus 
deterministic community assembly in activated sludge3. Such infor-
mation is also important for identifying key players in the process 
and for providing a basis for targeted manipulation of activated 
sludge microbiomes.

We created a Global Water Microbiome Consortium (GWMC) 
(http://gwmc.ou.edu/) and conducted a global campaign to sys-
tematically collect and analyse activated sludge microbiomes. We 
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Fig. 1 | The GWMC captures microbial diversity of globally distributed WWTPs. a, Geographical distribution of 269 WWTPs where activated sludge 
samples and environmental data were collected. b, Predicting SAD of activated sludge bacterial communities. The grey line represents a SAD that was 
randomly chosen from our data. Each model was fit to the observed SAD (see Methods). Supplementary Table 2 shows the variations of the SADs explained 
by each model across all 1,186 activated sludge communities, indicating the best performance of the Poisson lognormal model. c, Estimation of the microbial 
richness of activated sludge of WWTPs. Microbial species are defined as OTUs at 97% sequence similarity threshold. The microbial richness (S)–abundance 
(N) scaling relationship (broken grey line with pink shading as 95% prediction interval), and the grey circles representing richness estimates from other 
systems were derived from a previous study19. Richness was predicted from the lognormal model using NT estimated from published data, and Nmax inferred 
from our sequencing data (filled circles) or Nmax = 0.4 × NT

0.93 predicted from the dominance-scaling law19 (open circles). WWTP indicates one WWTP, as do 
Human gut and Cow rumen. d, Latitudinal distribution of activated sludge bacterial diversity, plotting OTU richness against the absolute latitude of sampling 
locations shows the peak of richness at intermediate latitude (n = 1,186 biologically independent samples). The line shows the second-order polynomial 
fit based on ordinary least squares regression. P < 2 × 10–16 (two-sided) for both regression coefficients. The colour gradient denotes the annual mean air 
temperature. Shapes of symbols denotes whether a sample originated from the Northern Hemisphere or the Southern Hemisphere.
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collected activated sludge samples from 269 WWTPs in 86 cities, 
23 countries and 6 continents (Fig.  1a; Supplementary Table  1). 
Deep sequencing and analysis of 16S rRNA genes were performed 
to address fundamental ecological questions, including the follow-
ing: (1) What is the extent of global diversity of activated sludge 
microbial communities? (2) Does a core microbiome exist in acti-
vated sludge processes across different continents? (3) Do activated 
sludge microbiomes show a latitudinal diversity gradient (LDG)? 
(4) Is microbial biodiversity important for function in activated 
sludge processes? (5) What is the relative importance of determinis-
tic versus stochastic factors in regulating the composition, distribu-
tion and functions of activated sludge microbial communities?

Species abundance distributions
Species abundance distribution (SAD), a universal tool in ecology17 
and central to biodiversity theory, has not been rigorously tested in 

microbial ecology until recently18. Here, we tested common SAD 
models, including Poisson lognormal, log-series, Broken-stick and 
Zipf. The Poisson lognormal model explained 99% of the variation 
of the activated sludge bacterial SADs compared with 72% for log-
series, 94% for the Zipf model and 14% for Broken-stick (Fig. 1b; 
Supplementary Table  2). Consistent with previous studies18, the 
Poisson lognormal model gave the best fit to the observed SADs.

Extent of global microbial diversity
A grand challenge in biodiversity research is determining the num-
ber of species in an ecological system19. We estimated the global 
richness of activated sludge bacterial communities on the basis of 
two parameters19,20. One is the total number of individuals (NT), 
which was estimated as 4–6 × 1023 bacteria in the global activated 
sludge community, based on published data9. The other is the 
quantity of the most abundant taxa (Nmax), which can be estimated 
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based on either our sequence data or the dominance-scaling law19. 
The lognormal model predicts 1.1 ± 0.07 × 109 species in activated 
sludge systems globally, with the Nmax at 1.2% of the NT based on 
our sequence data. The number of species increases only slightly, 
to 2.0 ± 0.2 × 109 species, using Nmax = 0.4 × NT

0.93 from the domi-
nance-scaling law19 (Fig. 1c). The estimates of bacterial richness of 
global activated sludge are only about one order of magnitude lower 
than that of the global ocean microbiome19 (~1010), even though 
the oceans of the world represent an enormously larger ecosystem, 
which could be attributed to the higher volumetric productivity, 
thus higher concentration of bacterial cells, in activated sludge.

Global core bacterial community
Previous studies have reported the core community in WWTPs 
at regional scales. For example, core genera exist in Danish14 and 
Asian15 WWTPs, but less than 10% of the genera overlap. Thus, a 
global core cannot be established from these regional studies.

At the global scale, occupancy-frequency and occupancy-abun-
dance analyses revealed a hyper-dominant pattern (Supplementary 
Fig. 1a) in which the 866 most abundant operational taxonomic units 
(OTUs; 1.39% of the total OTU number) accounted for 50.06% of the 
total abundance. Similar hyper-dominance patterns were observed in 
other macrobiological21 and microbiological communities22.

A core bacterial community was determined based on the abun-
dance and occurrence frequency of OTUs (see Methods for details). 
About 0.05% (28 OTUs) constituted a global core that accounted 
for 12.4 ± 0.2% (mean ± s.e.m.) of the sequences in activated sludge 
samples (Fig. 2a; Supplementary Table 3). Most (82%) of the core 
community members belonged to Proteobacteria, with 15 OTUs 
classified as β-Proteobacteria (Fig.  2b). The most abundant OTU, 
accounting for 1.14 ± 0.05% of the sequence abundance in activated 
sludge samples and occurring in 85% of all samples, was 99% similar 
to the γ-proteobacterium Dokdonella kunshanensis DC-323. The sec-
ond most abundant OTU (0.89 ± 0.06% in relative abundance and 
occurring in 96% of all samples) belonged to Zoogloea, a dominant 
genus in activated sludge communities15, with Zoogloea ramigera 
known to enhance the flocculation of activated sludge24. A Nitrospira 

OTU (OTU_6) was also identified as a core taxon, reflecting its 
importance for nitrite oxidation or complete ammonia oxidation in 
activated sludge25,26. OTU_7 is closely related to Arcobacter species, 
which are highly abundant in raw sewage27 and include potential 
pathogens such as Arcobacter cryaerophilus, Arcobacter butzleri and 
Arcobacter skirrowii28. Furthermore, two putative polyphosphate-
accumulating organisms (PAOs), a ‘Candidatus Accumulimonas’ 
OTU (OTU_37) and a ‘Candidatus Accumulibacter’ OTU 
(OTU_25), were identified as core taxa, although only 149 out 
of the 269 sampled WWTPs operate as enhanced biological P 
removal (EBPR) systems. Apparently, C. Accumulimonas and C. 
Accumulibacter exhibit some metabolic versatility.

The global core community has some overlap with previous 
studies. For example, Zoogloea species were proposed as core deni-
trifiers, and certain Saprospiraceae species play an important role 
in hydrolysis in EBPR systems29. However, some discrepancies also 
occurred. A previous study14 has shown that Nitrotoga rather than 
Nitrospira are primary nitrite oxidizers in Danish WWTPs. Another 
study30 found low abundances of both Nitrotoga and Nitrospira 
in a pilot-scale EBPR treatment plant, but Nitrotoga maintained 
high potential activities based on high small subunit rRNA/rDNA 
ratios. Regarding PAOs, we identified C. Accumulimonas and C. 
Accumulibacter as global core taxa, while Tetrasphaera was the core 
PAO in Danish WWTPs14,31.

We similarly determined core communities for a variety of eco-
systems at the global scale based on the Earth Microbiome Project 
(EMP) datasets5. Soil, human faeces, air and freshwater microbi-
omes had 9, 6, 2 and 1 bacterial OTUs identified as core taxa, respec-
tively (Supplementary Table 4). No core taxa were found for animal 
faeces and the ocean, possibly due to the highly variable community 
compositions. Notably, the core community for activated sludge had 
no overlap with the other habitats, suggesting that activated sludge 
selects for a unique core community.

Latitudinal diversity pattern
LDGs, whereby species richness tends to decrease as latitude 
increases32, are well documented in plant and animal ecology33. 
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Recently, several studies examined LDG patterns in natural micro-
bial communities, but found no clear trends6,7,34. In contrast, acti-
vated sludge operates under relatively stable and similar conditions 
everywhere. Thus, one might not expect activated sludge microbial 
communities to exhibit LDGs.

We examined the relationship between OTU richness and lati-
tude. OTU richness peaked at intermediate latitude, with a mean 
air temperature of ~15 °C (Fig. 1d). As taxonomic and phylogenetic 
diversity were highly correlated (R2 = 0.92), the trend was similar 
for phylogenetic diversity (Supplementary Fig.  2a). These results 
suggest that a LDG does not occur in activated sludge microbi-
omes; this parallels the global ocean microbiome7, but contrasts 
with some ocean34 and soil communities35. In addition, the relation-
ship between bacterial richness and temperature (Supplementary 
Fig. 2b,c) did not fit predictions from the metabolic theory of ecol-
ogy36. This theory cannot explain bacterial richness based on air 
temperature (R2 < 0.001; Supplementary Fig. 2b) and mixed liquid 
temperature (R2 = 0.03; Supplementary Fig. 2c).

Community structure across continents
Variations in community composition (β-diversity) are key for 
understanding community assembly mechanisms2,37 and ecosystem 
functioning38. To understand how the bacterial community compo-
sition of activated sludge varied across different spatial scales, we 
examined taxonomic and phylogenetic diversity. First, diversity 
was highest in Asia and lowest in South America (Supplementary 
Table 5). Second, considerable variations between activated sludge 
samples were observed even at the phylum level (Supplementary 
Fig.  1b). Although the taxonomic and phylogenetic community 
structures were not clearly separated at the OTU level in two-
dimensional ordinations (Supplementary Fig. 1c,d), permutational 
multivariate analysis of variance (PERMANOVA) indicated that 
taxonomic and phylogenetic composition were significantly dif-
ferent (P < 0.001) between any two continents (Supplementary 
Table 6). Third, climate and activated sludge process type exerted 
significant effects (P = 0.001) on microbial community structures, 
but these were overwhelmed by continental geographical separation 
(Supplementary Table 7). For example, bacterial communities of the 

same climate type in North America and Asia were distinguished 
by their continental origins rather than being clustered together 
(Supplementary Fig. 1e,f). The activated sludge bacterial communi-
ties exhibited higher similarity to those of freshwater and soil than 
to other environments (Fig. 3a); however, they harboured a unique 
microbiome that was distinctly different from all other habitats 
(Supplementary Table 8).

A Bayesian approach39 was employed to identify potential 
sources of activated sludge bacterial communities at the genus level. 
The most dominant potential source was fresh water, attributing on 
average 46% of genera, followed by soil (17% on average) and ocean 
(12% on average) (Fig.  3b). Apparently, environmental character-
istics are more similar between an activated sludge bioreactor and 
fresh water than the others. Activated sludge and fresh water have 
potentially high immigration events through connected water sys-
tems, such as wastewater discharge to rivers after treatment.

Scale-dependent distance-decay patterns
Another fundamental pattern in ecology is the distance-decay rela-
tionship (DDR)17,40, in which community similarity decreases as the 
geographical distance increases. Consistent with results in other 
domains37, we hypothesized that (1) the slope of the DDR curve 
would vary over local, regional and global scales, and (2) the spatial 
turnover rates of activated sludge microbial communities would be 
lower than those observed in natural habitats, especially for non-
flowing ecosystems, such as soils41.

Supporting our first hypothesis, significant negative DDRs 
(P < 0.001) were observed across all scales based on taxonomic diver-
sity (slope = −0.06 for Sorensen, −0.08 for Bray–Curtis and −0.08 
for Canberra distance) and phylogenetic diversity (slope = −0.04 
for unweighted Unifrac and −0.02 for weighted Unifrac) (Fig. 4a; 
Supplementary Table  9). The slopes of DDRs depended signifi-
cantly on spatial scale. The DDR slopes across cities within a con-
tinent (−0.13 to −0.16 for taxonomic similarity indices, and −0.03 
to −0.09 for phylogenetic similarity indices) were significantly 
(P = 0.001) steeper (more than two times) than the overall slopes 
for all similarity metrics (Supplementary Table 9). Countering our 
second hypothesis, the overall spatial turnover rates of the activated 
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sludge communities were similar to those found in non-flowing 
natural habitats such as soils6 and sediments37.

Linking community structure to function
Understanding the relationships between biodiversity and eco-
system function is a critical topic in ecology42. Despite decades of 
intensive studies, the biodiversity–function relationship is still hotly 
debated, particularly in microbial ecology43. A recent meta-analysis 
of the microbial ecology literature found that less than one-half of 
all mechanistic claims were backed up by any statistical tests44. Since 
activated sludge is an engineered system, we hypothesized that there 
would be a strong linkage between the activated sludge bacterial 
community structure and its functions.

To assess functions, we calculated the removal rates of organic 
matter (biochemical oxygen demand (BOD), chemical oxygen 
demand (COD)), total phosphorus, total nitrogen and ammonium 
nitrogen. Partial Mantel tests revealed that the distance-corrected 
changes of activated sludge-community composition were signifi-
cantly correlated with all measured removal rates (P < 0.032), except 
for the ammonium nitrogen removal rate (P > 0.18) (Supplementary 
Table 10). Of the 28 global core OTUs, 27 were significantly corre-
lated (adjusted P < 0.05) with at least one out of the five functions 
examined. Most of the correlations (81%) were positive (Fig.  2c). 
Moreover, about 80% of the non-core OTUs showed significant 
correlations (adjusted P < 0.05) with at least one function, and 40% 
of these correlations were positive (Supplementary Fig. 3a). All of 
these results indicate that the structure of the activated sludge bacte-

rial communities, particularly the dominant populations, is critical 
for maintaining activated sludge functions.

The global dataset also enabled us to assess the importance of 
specific functional groups to activated sludge functions. The nitri-
fying microbial community, including Nitrospira and Nitrosomonas 
OTUs, showed a closer correlation to the ammonium nitrogen 
removal rate than to the whole community (P = 0.04 for Bray–
Curtis distance; Supplementary Table 10). Further analysis revealed 
significant positive correlations of Nitrospira (Spearman’s ρ = 0.40, 
adjusted P < 0.001) and Nitrosomonas (Spearman’s ρ = 0.21, 
adjusted P < 0.001) abundance to the percentages of ammonium 
nitrogen removal (percentage of influent concentration), but not 
to the ammonium nitrogen removal rate (Supplementary Fig. 3b). 
Nitrospira was the top genus correlating with the percentage of 
ammonium nitrogen removal, corroborating its role in nitrite oxida-
tion in activated sludge. Regarding ammonium-oxidizing bacteria, 
an activated sludge bioreactor harboured 15 Nitrosomonas OTUs on 
average, which made up 0.73 ± 0.06% of the sequence abundance 
(Supplementary Table 11).

Consistent with our expectation, the activated sludge com-
munity composition was significantly correlated with the total P 
removal rate for the samples from EBPR plants, but not for non-
EBPR plants (Supplementary Table 10), as P removal processes in 
non-EBPR plants are predominantly chemical. The diversity of 
the three potential PAOs31 were significantly different (P < 0.0001, 
two-tailed paired t-test between any two organisms), with 8.2 ± 0.2 
C. Accumulimonas OTUs, 6.6 ± 0.2 C. Accumulibacter OTUs 
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and 3.2 ± 0.1 Tetrasphaera OTUs within a typical activated sludge 
bioreactor. While the relative abundance of C. Accumulimonas 
(0.42 ± 0.06%) was not different from that of C. Accumulibacter 
(0.42 ± 0.04%; two-tailed paired t-test, P = 0.92), both were more 
abundant than Tetrasphaera (mean relative abundance 0.17 ± 0.02%; 
two-tailed paired t-test, P < 0.0001) (Supplementary Table 12).

Stochastic community assembly
Since WWTPs are well-controlled engineered ecosystems, we 
hypothesized that the activated sludge community assembly has a 
deterministic nature, and we calculated the null model-based sto-
chastic ratios41 with taxonomic and phylogenetic metrics. The aver-
age stochastic ratios based on these four metrics were all higher 
than 0.75 (Fig. 4b). This result suggests that stochastic factors are 
more important than deterministic factors in influencing commu-
nity composition, at least partially contradicting our hypothesis.

To discern the relative importance of various factors contributing 
to spatial turnover of the activated sludge bacterial communities, we 
performed multiple ‘regression on matrices’ (MRM) analyses and a 
subsequent variance partition analysis (VPA) based on various tax-
onomic and phylogenetic diversity metrics (Fig. 4c; Supplementary 
Fig.  4). Over all scales, the MRM model explained considerable 
and significant portions of the community variations based on 
Bray–Curtis similarity (R2 = 0.46, P = 0.001) (Fig.  4c), with >50% 
variations unexplained. Among these, 25%, 11% and 10% of the 
variations were explained by geographical distance, environmental 
variables and their interactions, respectively (Fig. 4c). Similar trends 
were observed across different scales, with environmental variables 
explaining <30% of community variations based on different simi-
larity metrics (Supplementary Fig. 4). These results support those 
inferred from the null-model-based stochastic ratio analysis.

Environmental drivers of community composition
Because both stochastic and deterministic factors are important in 
forming the activated sludge community assembly, we attempted 
to discern the roles of individual deterministic factors in shaping 
community structure. We correlated the geographical distance-cor-
rected dissimilarities of community composition with those of envi-
ronmental variables using the partial Mantel test (Supplementary 
Fig. 5a; Supplementary Table 13). Overall, the microbial community 
composition was strongly correlated with absolute latitude, mean 
annual temperature, solids retention time (SRT, the average time 
during which activated sludge solids are in the system) and influ-
ent COD and BOD concentrations, representing organic matter 
(rm = 0.23–0.30, P = 0.001).

A more in-depth analysis using structural equation modelling 
(SEM) revealed direct and indirect effects of the environmental 
drivers (Fig. 5a). Consistent with the Mantel test results, tempera-
ture had the strongest direct effects on the first principal component 
score (PC1) representing the community structure (standardized 
path coefficient, β = 0.50, P < 0.001). It also had weak negative 
impacts on species richness (β = −0.14, P < 0.001). This is consis-
tent with previous observations at local45,46 and regional47 scales that 
highlighted temperature as a key factor influencing activated sludge 
community structure and, in particular, abundance and diversity of 
slow-growing microorganisms such as ammonium-oxidizing bacte-
ria and nitrite-oxidizing bacteria.

Various biotic and abiotic factors (for example, food-to-microor-
ganisms ratio (F/M) (the ratio of organic matter to microorganisms), 
dissolved oxygen concentration and SRT) directly affected BOD 
removal rates (Fig. 5a). Influent BOD probably has an impact on 
bacterial composition through its effect on the F/M ratio (β = 0.31, 
P < 0.001), which is inversely related to the SRT. Influent BOD is the 
most influential environmental variable directly related to bacterial 
richness (β = -0.28, P < 0.001), and the abundance-weighted mean 
rRNA gene copy number significantly increased with the influent 

BOD (R2 = 0.19, P < 0.0001) (Fig. 5b). All of these results are con-
sistent with the resource-competition theory48, which predicts that 
high species diversity occurs with low to intermediate supply of 
resources, but fast-growing r-strategists outcompete efficient-scav-
enging K-strategists at high resource levels49.

To independently test the strength of correlation for each of the 
three strongest parameters (temperature, SRT and influent BOD) 
with bacterial community structure, we performed random forest 
analysis, a machine learning-based method. Using species abun-
dance as the input data, the model predicted temperature, SRT 
and influent BOD with an explained variance of 69%, 25% and 
18%, respectively (Fig. 5c; Supplementary Fig. 5b). When control-
ling for spatial autocorrelation, models of temperature continued 
to have higher accuracy (Supplementary Fig. 5b). For example, the 
America-fitted model of temperature (that is, a model trained solely 
using samples from North and South America) was able to capture 
variations in the temperatures of samples from Asia (cross-validated 
R2 = 0.47) (Fig.  5c). The random forest model also revealed the 
most important OTUs for predicting temperature (Supplementary 
Fig.  5c). These results corroborate that temperature is the major 
environmental variable shaping the activated sludge bacterial com-
positions at the global scale, although it only has a weak effect on 
species richness (Fig. 5a).

Conclusions and future perspectives
Through well-coordinated international efforts, we systematically 
examined the global diversity and biogeography of activated sludge 
bacterial communities within the context of theoretical ecology 
frameworks. Our findings enhance our understanding of micro-
bial ecology in activated sludge, setting the stage for various future 
analyses of WWTP microbiomes, as well as other microbial com-
munities that span the globe.

Based on experimental and theoretical analyses, we estimate 
that activated sludge systems are globally inhabited by ~109 differ-
ent bacterial species. In contrast, only about 104 species have been 
cultivated and studied in detail19. If we assume that all cultivated 
species are present in activated sludge, potentially 99.999% of acti-
vated sludge microbial taxa remain uncultured. Although more and 
more microorganisms have been genomically characterized, explor-
ing physiological attributes, which requires cultivation, represents a 
formidable task for future microbiologists and process engineers50. 
This finding also highlights how little we know of the world’s micro-
biome, even in one of the most common and well-controlled sys-
tems in the built environment. Despite the very large diversity in 
activated sludge, a functionally important global core community 
consists of fewer than 30 taxa. This core might serve as the ‘most 
wanted’ list for future experimental efforts to understand their 
genetic, biochemical, physiological and ecological traits.

Even though activated sludge is a managed ecosystem, its bacte-
rial composition appears to be driven most probably by stochastic 
processes, such as dispersal and drift, which apparently contradicts 
conventional wisdom. However, deterministic factors (for example, 
temperature, SRT and organic C inputs) play important roles in 
regulating the structure of the activated sludge community. This 
could be important for developing operating strategies to maintain 
biodiversity that promotes stable system performance. Perhaps one 
could overcome dispersal limitation by establishing WWTPs, or 
repopulating failed WWTPs, using an inoculum of activated sludge 
from functioning WWTPs, which is a common practice in envi-
ronmental engineering. Alternatively, one could alternate organic C 
loadings and/or operational conditions to manipulate the structure 
of the activated sludge community to select for the microorganisms 
that have the desired functions.

Finally, apart from the practical implications of this study, it 
appears that the global bacterial communities in activated sludge 
follow various macroecological patterns, such as SADs, DDRs, 
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resource theory and community assembly mechanisms. Given that 
activated sludge can be controlled and monitored, it could be an 
excellent system for testing how well different macroecological 
theories apply to microbial ecology. For example, the relationships 
among biodiversity, food web interactions, succession, stability and 
ecosystem functioning.

Methods
Global sampling and metadata collection. The GWMC (http://gwmc.ou.edu/) 
was initiated in May 2014 as a platform to facilitate international collaboration 
and communication on research and education for global water microbiome 
studies. The GWMC is a collaboration across more than 70 research groups from 
23 countries. As the first initiative of GWMC, we launched this study with a global 
sampling campaign targeting municipal WWTPs by focusing on the activated 
sludge process. Unlike the EMP, which employed a bottom-up strategy to solicit 
microbial samples5, we used a top-down approach to select WWTPs for sampling 
by considering their latitudes, climate zones, spatial scales, activated sludge process 
type and accessibility for sampling.

The main goal of this study was to provide a system-level mechanistic 
understanding of the global diversity and distribution of municipal WWTP 
microbiomes. WWTPs were selected based on the following criteria: (1) 
Continental-level geographical locations. Samples were obtained from all 
continents except for Antarctica, but with a special focus on North America, 
Asia and Europe (Fig. 1a). Because of the low accessibility, WWTPs in Africa 
and South America were under-represented. (2) Latitude. To address questions 
related to the LDG, WWTPs were intensively sampled in North America along 
the east and west coasts, and Highway 35 and Highway 40 (from east to west) 
(Fig. 1a), in Asia, Europe and Australia. The WWTPs sampled spanned latitudes 
from 43.6 °S to 64.8 °N. (3) Climate zones. Since climate could have substantial 
impacts on microbial communities, the samples covered 17 different climate types 
(Supplementary Fig. 6). To distinguish independent effects of continents versus 
climate zones, we increased sampling efforts for climate zones that were present 
in multiple continents, such as humid subtropical climate. (4) Scales. The samples 
were collected from very broad spatial scales; that is, global (across 6 continents), 
regional (for example, individual continents or climate zones) and local (for 
example, individual cities). Within some cities, multiple WWTPs and multiple 
samples per WWTP were collected. (5) Wastewater treatment process types. To 
address the relationship between structure and function for activated sludge, we 
sampled the aerobic zone of conventional plug flow, oxidation ditch, sequential 
batch reactors, anaerobic/anoxic/oxic and other activated sludge process types.

A unified protocol was used for sampling, sample preservation, metadata 
collection, DNA extraction, sequencing and sequence analysis to minimize 
potential experimental variations4,51–53. Detailed sampling and metadata collection 
methods and protocols are available at the GWMC website (http://gwmc.ou.edu/
protocols/view/11).

Sampling was carried out between June and November 2014 in the Northern 
Hemisphere and between December 2014 and April 2015 in the Southern 
Hemisphere. The sampling time was generally between 10:00 to 14:00, when the 
WWTPs were relatively stable under normal conditions. Although we tried to collect 
the global samples in the same season, seasonal temporal turnover in activated sludge 
communities could have had some effect on the community variations we observed. 
Based on limited published work54,55, such temporal variations should be much 
smaller than the spatial variations at the global or continental scales. For example, a 
previous study of the 5-year temporal dynamics of an activated sludge community 
showed no significant seasonal succession54. It also revealed that the activated sludge 
communities were relatively stable across 3 months, with an average Bray–Curtis 
distance of 0.45 ± 0.10 (mean ± s.d.) between samples55; this variation was smaller than 
our observed mean variations even at the local city level (0.54 ± 0.19) (Fig. 4a).

At the local scale, we defined a city based on it having a large enough 
geographical scale, not on an administrative division (see Supplementary Table 1 
for defined cities). For each city, we usually collected at least 12 samples, and had 
≥12 samples per city in 77% cities, with <3 samples per city in only 1% of cities. We 
also sampled at least 2 WWTPs in 72% of the cities. At each plant, we collected at 
least three mixed liquor samples, generally from three different positions (the front, 
middle and end part) of the aerobic zone in each aeration tank. In a few cases (3.3% 
plants), where only one sampling position was applicable, three samples were taken 
in sequence with at least a 30-min interval. Altogether, we collected 1,186 activated 
sludge samples from 269 WWTPs across 23 countries, from the global scale (for 
example, across 6 continents) and regional scale (for example, individual continents) 
to local scale (for example, geographical sites or individual cities) (Fig. 1a).

At each sampling position, approximately 1 litre of mixed liquor was sampled 
and well mixed, and 40 ml was transferred into a sterile tube. The mixed liquor 
samples were kept on ice (≤4 °C), transported to a laboratory within 24 h, divided 
into aliquots and then centrifuged at 4 °C, 15,000 × g for 10 min to collect pellets. 
Sludge pellets were transported (if necessary) with dry ice to the designated 
laboratories within 48 h and preserved at −80 °C before DNA extraction.

Along with the sludge samples, associated metadata, conforming to the 
Genomic Standards Consortium’s MIxS and Environmental Ontology Standards56,57, 

were provided by plant managers and/or investigators (Supplementary Table 1; 
Supplementary Fig. 7). We collected metadata (for example, chemical properties, 
operation conditions and process type) from each plant using a standard sampling 
data sheet, which ensured that the data from all plants were in the same format. 
Raw metadata were processed as one metadata table (Supplementary Table 1) and 
classified into the following three categories: geological variables, plant operation 
and monitoring variables, and sample properties. The geological variables included 
the following: latitude and longitude; ambient climate variables such as climate type, 
mean annual temperature and precipitation; and population size and gross domestic 
product for the city where the WWTP was located.

Climate type was determined using the Köppen–Geiger climate classification58. 
Gross domestic product and population data were derived from the Brookings 
analysis of Global Metro Monitor59. Variables related to plant design and operation 
include plant age, design capacity, actual flow rate, volume of aeration tanks, 
hydraulic retention time (HRT) and SRT. The activated sludge process type, aerator 
type and coupling with N removal processes (nitrification and denitrification) 
in the WWTP were also provided by the plant managers where possible. Plant 
monitoring variables included influent and effluent BOD and COD (representing 
the organic C level), total nitrogen and total phosphorus (representing nutrient 
level), ammonium N, and the F/M ratio (indicating the average organic C loading 
to microorganisms). For sample properties, most plant managers provided the 
yearly average value of mixed liquor suspended solids (MLSS), indicating the 
concentration of biomass in the activated sludge, dissolved oxygen, pH and mixed 
liquid temperature; some provided the measured values when sampling.

Activated sludge performance was calculated as the specific removal rates (g per  
g biomass per day) of organic C (BOD and COD), nutrients (total nitrogen and 
total phosphorus) and ammonium nitrogen (NH4-N) as follows:

= − ×
×

X XRemoval rate (Influent( ) Effluent( )) flow rate
MLSS aerobic tank volume

The WWTPs represent diverse geographies and a large range of climatic 
conditions, operation parameters and chemical conditions across and within 
continents (Supplementary Fig. 7). For instance, the average influent BOD ranged 
from 30 to 1,000 mg per litre. Such a broad range of diverse parameters is critical for 
disentangling the mechanisms of activated sludge microbial community assembly.

DNA extraction. To minimize the variations associated with sample processing, 
identical protocols were used in DNA extraction and 16S rRNA gene sequencing. 
All samples from China and Japan were shipped to X.W.’s Laboratory at Tsinghua 
University for DNA extraction. All other samples, including samples from Europe 
collected by T.C. at Newcastle University, were shipped to J.Z.’s Laboratory at the 
University of Oklahoma for DNA extraction. Owing to the tight restriction of 
sample shipment in South Africa, Mexico, Chile, Uruguay and Brazil, the DNA was 
extracted by GWMC members in these countries. DNA was extracted from sludge 
samples using MoBio PowerSoil DNA isolation kits. For each sample, a pellet 
from 3 ml of mixed liquor was used. In addition to the manufacturer’s protocol, 
we always placed 12 bead tubes evenly on the vortexer and vortexed at maximum 
speed for 10 min to minimize the lysis efficiency difference between samples. All 
DNA samples were processed at The University of Oklahoma for sequencing.

DNA quality for all samples was evaluated using a NanoDrop 
spectrophotometer (NanoDrop Technologies) at the University of Oklahoma. Final 
DNA concentrations were quantified using PicoGreen and a FLUO star Optima 
instrument (BMG Labtech). Purified DNA was stored at −80 °C.

16S rRNA gene sequencing and sequence processing. The V4 region 
of the 16S rRNA gene was amplified and sequenced using standardized 
protocols with the phasing amplicon sequencing (PAS) approach as described 
previously60 and the primers 515F (GTGCCAGCMGCCGCGGTAA) and 806R 
(GGACTACHVGGGTWTCTAAT) of the EMP61. In silico primer coverage 
analysis using SILVA TestPrime v.1.062 and SILVA dataset r123 showed that these 
primers cover 86.8% and 52.9% of all bacterial and archaeal sequences with 0 
mismatches, respectively.

To mitigate quantitative problems associated with amplicon sequencing52, the 
16S rRNA gene fragments were amplified from community DNA samples (10 ng) 
with two-step PCR using lower numbers of amplification cycles (10 and 20 cycles 
for the first and second step, respectively). The two-step PAS approach provides 
the following advantages: lower amplification biases, better sequence-read quality, 
higher effective sequence read numbers and length, and lower sequencing errors60. 
All samples were sequenced using the same MiSeq instrument at the Institute 
for Environmental Genomics, University of Oklahoma. Generally, about 400 
samples were combined for each round of MiSeq sequencing. Since the numbers 
of sequence reads varied substantially from sample to sample, most samples were 
sequenced more than once (for example, 19% twice, 33% three times, 43% more 
than times) to meet the target number of about 30,000 sequencing reads per 
sample, as determined in our previous analysis63.

The numbers of sequences (reads) per sample ranged from 25,631 to 351,844 
(Supplementary Table 5), and a total of 96,148 OTUs were obtained. About 1.3% of 
these OTUs were from archaea, which accounted for 0.13% of the total abundance. 
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The choice of the PCR primer pair 506F/806R (which was also used in the EMP) 
is highly likely to have strongly influenced this low archaeal abundance due to the 
much lower coverage of the primers of archaeal 16S rRNA genes compared to the 
bacterial counterparts. Because of the low archaeal abundance, the term ‘bacteria’ 
is used for simplicity. Also, the terms microbiome and microbial (or bacterial) 
community are used interchangeably.

Raw sequence data were processed as previously described35, except for OTU 
generation by UPARSE64 at the 97% similarity threshold, resulting in 96,148 OTUs. We 
define OTUs (based on 97% sequence similarity) for bacterial and archaeal phylotypes. 
Although there is potential misconnection between OTUs and microbial species65, 
we use this popular definition for simplicity, and it allows comparison with previous 
studies of other systems. The representative sequences were aligned using Clustal 
Omega v.1.2.266 for constructing the phylogenetic tree using FastTree2 v.2.1.1067. OTUs 
were taxonomically annotated using RDP Classifier68 with a confidence cut-off of 80%, 
using the MiDAS database (v.2.1), which specifically provides a curated taxonomy 
for abundant and functionally important microorganisms in activated sludge69. After 
removal of the global singletons64, the sequence number in each sample was rarefied to 
the same depth (25,600 sequences per sample), resulting in 61,448 OTUs overall, which 
were used in subsequent comparative analyses.

Although our sequencing depths were considerably higher than those in many 
similar studies70, rarefaction curves (Supplementary Fig. 2d,e) of activated sludge 
microbial communities indicated that additional rare taxa were probably present 
in individual samples. Nevertheless, pooling all sequences gave a sufficient number 
for estimating global- and continent-level diversity of activated sludge microbial 
communities (Supplementary Fig. 2f,g). The global OTU richness per sample was 
2,309 ± 559 (Supplementary Table 5). Besides richness, we also calculated other 
α-diversity indices on a global and regional scale (Supplementary Table 5).

The rRNA operon copy number for each OTU was estimated through the 
rrnDB database based on its closest relatives with a known rRNA operon copy 
number71. The abundance-weighted mean rRNA operon copy number was then 
calculated for each sample as described previously49.

Sequence comparison against reference databases. To compare the sequence 
diversity in this study to that in existing databases, the 96,148 representative sequences 
from the activated sludge samples were compared against the representative set (97% 
similarity level) of full-length sequences from Greengenes 13.872 (released on August 
2013) and the non-eukaryotic fraction of Silva 132 databases73 (released on December 
2017). We used the open-source sequence search tool USEARCH1074 in global 
alignment search mode, and we required 97% similarity across the query sequence. 
Our activated sludge sequences matched to 38.6% of Greengenes and 37.2% of SILVA 
16S rRNA gene OTUs at 97% similarity. These matches accounted for 18.2% and 
22.5% of the representative sequences in our datasets, respectively, indicating that 
the majority of activated sludge microbial species diversity is not yet captured in full-
length sequence databases; this is similar to the observations in the EMP5.

SAD fitting. We compared the SAD of each sample, based on the rank-abundance 
distribution, with predictions from Poisson lognormal, log-series, Broken-stick and 
Zipf models. Although numerous SAD models are available, lognormal and log-series 
have been the most successful in predicting SADs, and they are the standards for testing 
other models18. While the logseries model is well supported by macroecological studies, 
the Poisson lognormal model is more commonly observed with microorganisms18. By 
comparing (rank-for-rank) the observed and predicted SADs using regression analysis, 
we could directly infer the percentages of variations in abundance among species 
explained by each model using a previously described code18.

Estimation of global bacterial diversity of WWTPs. We used the methods 
described in previous studies19,20 to predict global bacterial richness (ST) using the 
lognormal model. The lognormal prediction of ST is based on the total abundance 
(NT), the abundance of the most abundant species (Nmax) and the assumption that 
the rarest species is a singleton, Nmin = 1. In communities with NT individuals, the 
richness can be estimated as follows:







































π=S
a

a
N
N

exp log (1)T 2
max

min

2

where a is an inverse measure of the width of the distribution, which can be 
numerically solved from the following:
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We used published data to estimate the total microbial abundance in WWTPs 
as follows. Empirical records compiled from a variety of sources, for example, 
AQUASTAT75 and a previous study76, suggest that about 330 km3 year−1 of 
municipal wastewater are produced globally, of which 60% is treated9. Assuming 
that they are all treated in WWTPs, then about 0.54 km3 of municipal wastewater is 
treated by WWTPs globally per day. The total effective volume (V) of aerobic tanks 
of WWTPs can be estimated as follows:

= ×V Q HRT (3)

where Q is the influent flow rate (m3 day–1) and the HRT of the aerobic tank is 
measured in days. Our dataset indicates that the average HRT of aerobic tanks is 
9.8 h (±0.3 s.e.). Thus, the total effective volume is estimated as 0.22 ± 0.007 km3. 
The total number of cells in activated sludge is about 2.3 ± 0.4 ×109 ml−1 (ref. 77); 
thus, the NT (global activated sludge bacterial abundance) is about 4.0–6.1 × 1023.

We then estimated the Nmax based on the ratio of Nmax to NT of our sequencing 
data, that is, the relative abundance of the most abundant OTU, or using scaling 
law19. The knowledge of NT, Nmax and Nmin allows equation (2) to be solved 
numerically for the parameter a and, subsequently, for ST using equation (1).

Using the same method, we estimated the total bacterial richness of individual 
WWTPs, along with WWTPs in the United States and China. The volume of 
aerobic tanks of a WWTP in Beijing, China is 10,000 m3, making the total number 
of cells about 2.3 ± 0.4 ×1019. NT of WWTPs in the United States and China were 
estimated based on their published data of the amount treated78,79, with activated 
sludge harbouring similar numbers of species for the United States (4.6 × 108 to 
1.1 × 109) and China (3.9 × 108 to 1.0 × 109). Nmax was further estimated based on 
our 16S rRNA gene sequencing data or using a scaling law19. The total bacterial 
richness estimates of individual human gut, individual cow rumen, global ocean 
and Earth were taken from a previous study19.

Core community determination. A global-scale core microbial community was 
determined based on multiple reported measures. First, ‘overall abundant OTUs’ 
were filtered out according to mean relative abundance (MRA) across all samples80. 
Previous studies used different criteria (for example, MRA > 1%30,81 or 0.1%82,83) 
without any objective or standard rule. Thus, we selected all top 0.1% OTUs (62) 
as overall abundant OTUs. Their MRA was higher than 0.2%, within the range 
of reported criteria. Second, ‘ubiquitous OTUs’ were defined as OTUs with an 
occurrence frequency in more than 80% of all samples84. Finally, ‘frequently 
abundant OTUs’ were selected based on their relative abundances with a sample. 
In each sample, the OTUs were defined as abundant when they had a higher 
relative abundance than other OTUs and made up the top 80% of the reads in the 
sample14. A frequently abundant OTU was defined as abundant in at least half of 
the samples, which is stricter than the reported criterion (10 out of 26 samples)14. 
Since the above three measures are complementary to one another when defining 
core community, only OTUs fulfilling all three criteria were defined as the global 
scale core bacterial community.

Following the same criteria as described above, the core community was 
identified for each continent. That is, a core OTU for a specific continent should 
be one that was from the top 0.1% OTUs of that continent; a core OTU also had to 
be detected in more than 80% of the samples and dominant for more 50% of the 
samples of that continent.

Comparison of bacterial community composition of WWTPs to natural 
habitats and source tracking. We downloaded the OTU table of 16S rRNA gene 
amplicon studies from the EMP (ftp://ftp.microbio.me/emp/release1/otu_tables/
closed_ref_greengenes/emp_cr_gg_13_8.subset_5k.biom)5. This table was 
generated using closed reference against Greengenes 13.8 and contained 5,000 
global samples from multiple habitats. To compare community compositions at 
the OTU level, our activated sludge OTUs were repicked using closed reference 
against Greengenes 13.8, which picked 68.1% of the sequences. This OTU table was 
then merged with the EMP OTU table. To give relatively equal representation of 
samples across environments, we further collapsed our activated sludge samples at 
the plant level by summing the abundance of each OTU across samples of the same 
plant, resulting in 269 activated sludge samples. Our activated sludge samples and 
the EMP samples from fresh water (including that from fresh water and freshwater 
biofilm), ocean (including that from sea water and biofilm), animal faeces, human 
faeces, soil and air were selected from the merged OTU table. We then subsampled 
to 10,000 sequences per sample. To compare microbial community compositions 
across habitats, the nonmetric multidimensional scaling (NMDS) analysis was 
performed using the Bray–Curtis dissimilarity matrix.

The proportion of each activated sludge microbiota attributable to fresh water, 
soil, ocean, animal and human faeces, and air at the genus level were estimated 
using SourceTracker39, which was run through QIIME with default settings and 
using activated sludge microbiota as the sink and those in other habitats as sources. 
Genera detected in less than 1% of the samples were filtered out before source-
tracking modelling.

Diversity analyses using α- and β-diversity and correlation with environment. 
Richness and Faith’s index were used to measure taxonomic and phylogenetic 

Nature Microbiology | VOL 4 | JULY 2019 | 1183–1195 | www.nature.com/naturemicrobiology 1191

ftp://ftp.microbio.me/emp/release1/otu_tables/closed_ref_greengenes/emp_cr_gg_13_8.subset_5k.biom
ftp://ftp.microbio.me/emp/release1/otu_tables/closed_ref_greengenes/emp_cr_gg_13_8.subset_5k.biom
http://www.nature.com/naturemicrobiology


Articles Nature Microbiology

α-diversity, respectively, and they were computed using the Picante R package85. 
Other taxonomic α-diversity indices, including the Shannon index, the Simpson 
index and Pielou’s evenness, were calculated using the vegan R package86.

Bray–Curtis (abundance-based) and Sorensen (incidence-based) distances 
were calculated to represent the taxonomic β-diversity using the vegan R package86. 
Canberra’s distance was also calculated, to give more weight to rare taxa, using 
the vegan R package86. The weighted (abundance-based) and unweighted UniFrac 
(incidence-based) distance87 were calculated to represent the phylogenetic 
β-diversity using the GUniFrac R package88. For each environmental variable, we 
performed a partial Mantel test to examine the correlation between environmental 
variable and microbial community composition independent of geographical 
location (999 permutations) using the vegan R package86.

PERMANOVA was applied to assess the difference of community composition 
among continents, climate types and activated sludge process types using the vegan 
R package86. In PERMANOVA, climate types were defined at the main climate 
group level, which includes the following five groups: A (tropical), B (arid), C 
(temperate), D (cold) and E (polar)58. The activated sludge process types were 
classified into the following nine general groups: complete mix, conventional plug 
flow, sequential batch reactors, anaerobic/anoxic/oxic, anoxic/oxic, oxidation ditch, 
contact stabilization, pure oxygen and extended aeration.

DDRs. The rate of the DDR was calculated as the slope of a linear least squares 
regression on the relationship between ln-transformed geographical distance 
versus ln-transformed bacterial community composition similarity. We used 
matrix permutation tests to examine the statistical significance of the distance-
decay slope37. The samples were permuted 999 times, and the observed slope 
was compared with the distribution of values in the permuted datasets. We also 
tested whether the slopes of the distance-decay curve at the three spatial scales 
(0–100 km, 100–5,000 km and 5,000–25,000 km) were significantly different 
from the slope of the overall distance-decay curve, using matrix permutations to 
compare the observed difference between slopes within the three spatial scales with 
the overall distance-decay slope to that over 999 permutations.

Estimating stochasticity of community assembly. We assessed community 
assembly stochasticity using a null-model-based index. The stochasticity ratio has 
been described previously41,89. Since null-model algorithms usually require a high 
number of replicates, we selected 71 cities, each of which had more than 9 samples; 
we randomly drew 9 samples from each city to make sampling even. We calculated 
the stochasticity ratio using taxonomic and phylogenetic metrics. Whether 
using the Bray–Curtis (abundance-weighted) or Sorensen (unweighted) model, 
the stochasticity ratio was calculated based on typical null-model algorithms 
for taxonomic metrics90,91. When using weighted and unweighted Unifrac, the 
stochasticity ratio was calculated based on typical null-model algorithms for 
phylogenetic metrics91,92. Samples within each city were considered sharing the 
same regional species pool in null-model algorithms.

Partitioning the environment and distance effect. To provide a quantification 
of the relative contribution of the environment effect versus the distance effect 
on β-diversity, we performed a VPA based on MRM. We used a modified MRM 
approach as described previously37. Briefly, we first selected a non-redundant 
environmental variable set. The final set included temperature, precipitation, 
design capacity, SRT, dissolved oxygen, pH and influent BOD. The highest 
correlation was between design capacity and SRT (Pearson’s r = −0.25), and it 
indicated a low level of collinearity among these variables. MRM was performed 
in different spatial scales. Geographical distance and microbial community 
distance were ln-transformed. A Euclidean distance matrix was calculated for each 
environmental variable. To reduce the effect of spurious relationships between 
variables, we first ran the MRM test with all the variables in the non-redundant 
environmental variable set, removed the nonsignificant variables from this initial 
MRM test, and then re-ran the test37. The significance of the partial regression 
was tested by matrix permutation for 999 times93. In VPA, the R2 of the selected 
environmental variables as independent matrices (R2

E), geographical distance 
as independent matrix (R2

G) and all matrices (R2
T) were used to compute the 

following four components of variations as described elsewehere94: (1) pure 
environmental variation = R2

T – R2
G; (2) pure geographical distance = R2

T – R2
E; (3) 

spatially structured environmental variation = R2
G + R2

E – R2
T; and (4) unexplained 

variation = 1 – R2
T.

SEM. SEM was used to explore the direct and indirect relationships among 
environmental variables, bacterial communities and activated sludge function. 
The community composition was represented by the PC1 of principal coordinate 
analysis based on Bray–Curtis distance. We first considered a full model 
that included all reasonable pathways, and then we sequentially eliminated 
nonsignificant pathways until we attained the final model whose pathways all 
were significant. To capture the quadratic correlation of SRT to diversity and 
BOD removal, we constructed a composite variable94 of ‘SRT effect’ as a linear 
combination of SRT and the square of SRT. We used a χ2 test and the root mean 
square error of approximation to evaluate the fit of model. The SEM-related 
analysis was performed using the lavaan R package95.

Random forest models. We applied a machine-learning model, random forest, 
to examine the strengths of the associations between environmental variables 
and compositional data using the randomForest R package96. We used OTUs as 
predictors and environmental variables as response data. To correct the potential 
spatial autocorrelation, we used OTU data at the plant level, by averaging the 
relative abundance of each OTU across samples of the same plant. OTUs that 
were detected in at least 20% of all the plants and in all continents were used for 
modelling. We allowed a baseline model to learn using the full dataset for training, 
and we subsequently trained new random forests for each plant using customized 
training sets that excluded plants within a defined radius of the target plant. The 
size of this radius ranged from 0 to 5,000 km. To delineate the model prediction 
strength, the cross-validated R2 was calculated as − ŷ∑ −

∑ − ̄
1

y

y y

( )

( )
i i

i i

2

2 , where yi is the value 

of the parameter for sample i, ŷi is the prediction for that same sample (obtained by 
held-out cross-validation), and ̄yi

 is the overall mean (the summation runs over all 
the samples).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The sample metadata are available in Supplementary Table 1. Sequences are 
available from the NCBI Sequence Read Archive with accession number 
PRJNA509305. OTU tables and representative sequences of the OTUs are available 
on the GWMC website (http://gwmc.ou.edu/data-disclose.html).

Code availability
R codes on the statistical analyses are available at https://github.com/Linwei-Wu/
Global-bacterial-diversity-in-WWTPs.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection No software used for data collection

Data analysis UPARSE, Clustal Omega (v1.2.2), FastTree2 (v2.1.10) and RDP Classifier were used to process the sequencing data; R (v3.4.6) was used for 
statistical analyses. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The sample metadata are available in Supplementary Table 1.  Sequences are available from the NCBI Sequence Read Archive with accession number PRJNA509305.  
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OTU tables and representative sequences of the OTUs are available on the GWMC web site (http://gwmc.ou.edu/data-disclose.html).  R codes on the statistical 
analyses are available from the corresponding authors upon reasonable request.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The Global Water Microbiome Consortium (GWMC) was initiated in May 2014 as a platform to facilitate international collaboration 
and communication on research and education for global water microbiome studies (http://gwmc.ou.edu/).  As the first initiative of 
GWMC, we launched this study with a global sampling campaign targeting municipal wastewater treatment plants (WWTPs) by 
focusing on the activated sludge (AS) process.  The main goal of this study was to provide system-level mechanistic understanding of 
global diversity and distribution of AS microbiomes from WWTPs. 

Research sample The research sample was the activated sludge in the aerobic zone of WWTPs. The 16S rRNA sequence data were obtained from the 
activated sludge samples.  

Sampling strategy WWTPs were selected considering their representation in continental-level geographic locations, latitude, climate zones and 
wastewater treatment process types (see Methods for details). In each plant, we collected at least three AS samples, generally from 
three different positions (the front, middle, and end part) of the aerobic zone in each aeration tank.  In a few cases (3.3% plants), 
where only one sampling position was applicable, three samples were taken in sequence with at least 30-min interval. In total, 1,186 
AS samples were collected from 269 WWTPs in 86 cities, 23 countries, and 6 continents.

Data collection Community DNAs were extracted from the 1186 AS samples using a standardized approach.  The V4 region of the 16S rRNA gene was 
amplified and deeply sequenced in one laboratory using the same method for all samples, to obtain the 16S rRNA sequence data.  
The metadata were provided by plant managers and/or investigators. Along with the sludge samples, we collected metadata (e.g., 
chemical properties, operation conditions, process type) from each plant using a standard sampling data sheet, which ensured that 
the data from all plants was in the same format.

Timing and spatial scale The sampling was carried out in June to November 2014 in the Northern Hemisphere and December 2014 to April 2015 in the 
Southern Hemisphere.  The sampling time was generally between 10:00 am to 2:00 pm, when the WWTPs were relatively stable 
under normal conditions.  
The samples were collected from very broad spatial scales:  global (across 6 continents), regional (e.g., individual continents or 
climate zones), and local (e.g., individual cities). In total, 1,186 AS samples were collected from 269 WWTPs in 86 cities, 23 countries, 
and 6 continents.

Data exclusions No data were excluded.

Reproducibility No laboratory manipulation experiments of biological processes were conducted - rather, and as stated above, our analyses are 
based on one-time survey conducted on AS of municipal WWTPs across a wide range of geographic locations.

Randomization No experiments per se were conducted, there was thus no experimental group allocation. There was no further group partitioning of 
data beyond the natural groupings associated with geography.

Blinding Blinding was not relevant to our study, because all available data were used (our study did not perform an experiment).

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
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Materials & experimental systems
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Unique biological materials
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Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study
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