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Abstract

Background: Since the analysis of a large number of metagenomic sequences costs heavy computing resources
and takes long time, we examined a selected small part of metagenomic sequences as “sample”s of the entire full
sequences, both for a mock community and for 10 different existing metagenomics case studies. A mock
community with 10 bacterial strains was prepared, and their mixed genome were sequenced by Hiseq. The hits of
BLAST search for reference genome of each strain were counted. Each of 176 different small parts selected from
these sequences were also searched by BLAST and their hits were also counted, in order to compare them to the
original search results from the full sequences. We also prepared small parts of sequences which were selected
from 10 publicly downloadable research data of MG-RAST service, and analyzed these samples with MG-RAST.

Results: Both the BLAST search tests of the mock community and the results from the publicly downloadable

researches of MG-RAST show that sampling an extremely small part from sequence data is useful to estimate brief
taxonomic information of the original metagenomic sequences. For 9 cases out of 10, the most annotated classes
from the MG-RAST analyses of the selected partial sample sequences are the same as the ones from the originals.

Conclusions: When a researcher wants to estimate brief information of a metagenome’s taxonomic distribution

wider geographic area, more frequently.

with less computing resources and within shorter time, the researcher can analyze a selected small part of
metagenomic sequences. With this approach, we can also build a strategy to monitor metagenome samples of
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Background

As next-generation sequencing is getting popular [1], a
large number of genome sequences now can be easily
generated for metagenomics research [2]. However, since
analyzing a large number of sequences usually costs heavy
computing resources and takes long time [3].

To shorten computation time and reduce requirements
for computing resources, researchers introduced advanced
algorithmic techniques and database optimization methods.
MetaPhlAn uses a database engineered to contain specific
marker genes to do sequence classification quickly [4].
Kraken searches a large k-mer database designed for its
own search method to look up its taxonomic trees [5]. Cen-
trifuge focuses more on compression of database sequences
to reduce the size of database to search [6].
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On the other hand, there have been several different
ways to get information only from a relatively small part
of the available data [7].

One example to reduce the cost of sequencing and
computing was a study to get an optimal depth of
sequencing forl6s rRNA [8]. This study demonstrated
that a small number of Illumina single-end reads, such
as 2000 reads, were enough to recapture the taxonomy
information and diversity patterns. It showed a possibil-
ity that meaningful information can be derived even
from a small portion of full sequences. However, it was
tested only for a certain type of gene, 16S rRNA [9].

Another example was “genome skimming” study that
showed the simulation results of rDNA assembly from
shallow sequencing of plant genomes [10]. Based on the
efficiency of the shallow sequencing that identified the
low-copy fraction of the nuclear genome, this study
suggested a strategy, where there are multiple candidate
species of interest, using shallow sequencing to choose a
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species with the best condition, before using deeper se-
quencing of that chosen species to know more details.

This concept of genome skimming is also applicable to
metagenome. One study pointed out that “metagenome
skimming” can be an efficient tool to capture “the gen-
omic diversity of poorly studied, species-rich lineages”,
after analyzing the sequencing results on two pools of
Coleopteran, that consisted about 200 species [11]. How-
ever, both studies targeted eucaryocyte and used assembly
method to analyze taxonomy, that still requires long com-
putation time for assembling process and a large amount
of sequences, which were more than hundred thousands
of reads.

Aims and objectives

In this study, getting taxonomic information from small
size sample of a large metagenome sequence data was
examined, in order to save computing resources and to
shorten processing time.

We utilized a simple rarefaction technique, often
used for various studies such as determination of opti-
mal sequencing depth [12]. We applied it to estimating
brief taxonomic information from extremely small parts
of various metagenomic sequences. We wanted to find
out how realistic that the extraction of taxonomic infor-
mation from those small parts is in practical cases. If it
is a practical approach, we might develop a protocol or
a standard to preview or pre-check metagenomic se-
quences with a quick estimation before doing a full-scale
analysis for them.

We selected a small part of metagenomic sequences in
several ways. We treated these selected sequences as a
sample of original full sequences. The phylum and the
class with dominant populations were annotated in the
sample and compared to ones annotated in the original
full sequences, since they are generally considered as im-
portant information in metagenomics [13]. The diversities
of phyla and classes were also compared.

A mock community, which was intentionally made of
known bacterial strains to get a mixed genome, was exam-
ined with BLAST search [14]. Since we know the real
taxonomic information of the mock community, we can
evaluate how well the samples that we made represent the
original taxonomic information. We also applied this ap-
proach to known results of existing researches, which are
available publicly in MG-RAST web site, which has been
an open access web service widely used for metagenomics
analysis [15].

Results

Mock community

The original full sequences obtained from the mock
community of 10 strains were about 1,220,000 reads or
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12.3 Gb. The GC content calculated from them was
53.1%.

The results of the GC content calculation for 176 dif-
ferent samples, which were selected from the original
full sequences by 16 different selection types for each of
11 different sample sizes from 100 to 50,000 reads, show
that GC content values get closer to 53.1%, as the sizes
of the samples increase. (Fig. 1) This can be regarded as
supportive evidence that a sample with a large enough
size represents the nature of the original full sequences.

To analyze the taxonomy of this mock community, the
numbers of hit reads from BLAST search for each of 10
strains of the original full sequences were counted. Their
ratios to the sum of all 10 strains’ hits range from 0.014
to 0.186. (Table 1) These are the original values that we
want to estimate with BLAST searches.

In order to do the estimation, the ratio of hit reads
counted for each strain to the sum of all 10 strains’ hits
was calculated for each of the 176 different samples,
again, which were selected from the original full sequences
by 16 different selection types per 11 different sample
sizes.

The result of the calculation from the samples shows
that the ratio values for Roseobacter get closer to 0.057,
which was the ratio value of Roseobacter calculated from
the original full sequences, as the sizes of the samples in-
crease. The ratio values for Arthrobacter get closer to
0.014 similarly. (Fig. 2) The ratio values calculated for the
samples of the other strains also show the similar results.
To show the tendency that the deviation from the differ-
ent sampling methods decreases while the size of the sam-
ple increases, the smallest values (Additional file 1: Table
S1) and the largest values (Additional file 1: Table S2)
among the ratio values calculated from 16 samples of each
sample size were tabulated. The standard deviation values
out of the ratios calculated from 16 samples of each sam-
ple size were also tabulated. (Additional file 1: Table S3).

As the size of the sample increases, the smallest
values and the largest values show their tendency of
getting closer to the ratio values calculated from the
original full sequences. At the same time, as the size of
the sample increases, the standard deviation value
mainly decrease, though there are a few exceptions,
since there are relatively large statistical errors where
the values are small.

Again, these results support the tendency that a sam-
ple with a large enough size has its hit ratios that are
close to ones of the original full sequence.

This means that small part of the original full
sequences can be used to estimate original taxonomic
annotation regardless of selection type, especially for
relative comparison, such as to answer a question of
which class is annotated most, and a question of which
phylum is more annotated than another phylum.
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Fig. 1 GC content of samples (The labels of x-axis mean the sample sizes. They are placed per one selection type. This means a label represents 4

Table 1 Hits of BLAST searches in the original full sequences of the mock community

Strain

Number of Hits

Ratio: Number of hits for each
strain/Sum(=164,662,612)

Escherichia coli KCTC 2571

Escherichia coli Strain W

Staphylococcus epidermidis ATCC
Pseudomonas stutzeri ATCC 17588
Klebsiella pneumoniae KCTC 2242
Chromobacterium violaceum ATCC 12472
Polaromonas naphthalenivorans CJ2
Corynebacterium glutamicum ATCC 13032
Roseobacter denitrificans OCh114
Arthrobacter chlorophenolicus A6

Sum

30,658,032
29,390,176
18,862,322
18,559,245
15,708,328
15,466,319
14,081,217
10,351,377
9,332,359
2,253,237
164,662,612

0.1862
0.1785
0.1146
0.1127
0.0954
0.0939
0.0855
0.0629
0.0567
0.0137
1
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Meanwhile, we can explain the difference between the
results from the original full sequences and the ones
from the samples as a general statistical error problem
of a small size sample.

For a given margin of error, we can approximate a
proper sample size, if we consider that estimating a taxo-
nomic proportion of sequences is similar to a general
statistical sampling problem, such as a poll to estimate a
proportion of voters to an election candidate.

For example, as a rough approximation, if we assume
that a given unknown set of metagenomic sequences
follows a normal distribution and expected proportion
of reads classified as a certain taxon is close to 1/2,
which is a widely used value where we do not have any
initial information about the actual proportion and the
start-up cost of sampling is expensive [16], there is a
simplified equation to calculate the size of the sample
for a margin of error. (Eq. 1.) [16] By this calculation,

the sample size for 1% margin of error and 85% confi-
dence is about 5000 (5184).

(Za/2)" -
EZ

N
N~

n=

Eq. 1. Determining the sample size n in estimation of
population proportion, where the probability of the
range greater than Za/2 at the standard normal distribu-
tion equals to (1-confidence)/2, and E is margin of error.

If we apply this margin of error calculation to the
mock community test, the result from this margin of
error calculation might be smaller than the actual errors,
because all the ratio values of the mock community from
the original full sequences are smaller than 1/2. Never-
theless, BLAST search result from a sample made by
selecting 5000 reads from the start of the original full
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sequences (“selection type 1” and 0 as “K number”) of
this mock community still gives fair estimation of the ra-
tio values. (Fig. 3).

We can compare this to a more general case of statis-
tical sampling problem. For instance, we made the sample
whose size is 5000 reads to estimate total 1.22 million
reads. On the other hand, New York Times/CBS News
performed a poll of 1426 people for 2016 U.S. Presidential
election of total 137 million voters [17].

MG-RAST: Applicability in full-scale metagenomics
sequencedata sets

All the GC content values calculated from the original
full sequences of the 10 public MG-RAST projects, that
all have more than 170,000,000 reads, were compared to
the GC content values calculated from the samples,
that only have 5000 reads selected from them. (Table 2)
In most cases, the GC content values calculated from
the samples estimate the ones calculated from the origi-
nals well.

The most annotated phyla and classes from the ori-
ginal MG-RAST research data were compared to the
ones of the samples. (Table 3) For 9 cases out of 10, the
most annotated phyla from the MG-RAST projects of
the samples show the same results as the ones of the ori-
ginal data. For 9 cases out of 10, the most annotated
classes are the same between the original MG-RAST re-
search data and the ones of the samples. Considering
that 4 different classes were shown among all the cases,
these 9 out of 10 matches support the assumption that

Page 5 of 13

these samples can estimate the brief taxonomic informa-
tion of the originals.

On the other hand, the numbers of the annotated
phyla from the samples tend to be smaller than the
ones from the originals. (Fig. 4) The numbers of the an-
notated classes from the samples tend to be even much
smaller than the ones from the samples. (Fig. 5) These
are because the samples did not include different se-
quences representing all the different phyla and classes
in the original data. A phylum or a class that presents
only a small number of sequences in original has low
probability of being captured in a sample. This implies
that this type of sampling cannot take all the taxonomic
diversity information.

However, if we apply 1% threshold to remove over-anno-
tation and/or mis-annotation, the numbers of the
annotated phyla from the samples get much closer to the
ones from the original data. (Fig. 6) The numbers of the an-
notated classes from the samples also get closer to the ones
from the original data. (Fig. 7) This supports the assump-
tion that this samples still can estimate, at least, part of
taxonomic diversity information.

Discussion

Both the BLAST search tests of the mock community
and the results from the publicly downloadable data sets
of MG-RAST show that the sampling very small part of
sequence data is useful to estimate the brief taxonomic
information of the original metagenomic sequences. The
sample sequences with their sizes of only 5000 reads,

Original ratio
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Table 2 GC Contents, original vs. sample
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Original MG-RAST ID Sample MG-RAST ID

Original GC Content (%) Sample GC Content (%)

4,539,528.3 4,701,886.3
45102193 4,701,884.3
45101733 4,701,887.3
4,509,400.3 4,701,883.3
4,562,385.3 4,701,888.3
4,538,997.3 4,701,892.3
4,539,575.3 4,701,885.3
45874323 4,701,891.3
4,555915.3 4,701,890.3
45336113 4,701,889.3

62.975 62.161
53813 51.365
50512 50477
62.269 62.468
56.816 57.733
58.078 56.902
60.177 60.568
52943 52.68

48.254 48.132
56.184 45.012

selected from the large sequence data from the existing
public cases of MG-RAST, give a useful estimation both
to a question of what the most annotated phylum/class
is and to a question of how diverse phyla/classes are.

On average, the size of the sample is only 0.002% of
the original data, in terms of number of bases. This
small size reduces computing time in MG-RAST from
several months to a few hours.

It means we can get an estimated result of metage-
nomic sequence analysis quickly even with less comput-
ing resources when we use a small part of genome data.
This aligns with the conclusions of shallow sequencing
and the results of metagenome skimming to do an effi-
cient analysis with less sequencing.

On the contrary, In the case where the sample estimates
the most annotated phylum incorrectly (MG-RAST
ID:4587432.3), the difference between the number of the
most annotated phylum (Firmicutes) and the number of
the second most annotated phylum (Actinobacteria) in
the original is only 0.8% point. (Fig. 8) This small differ-
ence is the reason why the estimation from the sample is
incorrect. Similarly, in the case where the sample esti-
mates the most annotated class incorrectly (MG-RAST

Table 3 Most annotated phylum and classes, original vs. sample

1D:4538997.3), the difference between the number of the
most annotated class (Alphaproteobacteria) and the num-
ber of the second most annotated class (Deltaproteobac-
teria) in the original is also as small as 2.2% point. (Fig. 9)
These can be regarded as statistical errors. It means an
analysis from a sample cannot identify a difference that is
smaller than a certain statistical limit.

There is also possibility that the sampling method used
here was not the optimal choice. Since our choice of the
sampling method was just for minimizing the sampling
cost, ignoring quality difference of different sampling
methods. If we had tried any pre-checks for different
sampling methods, such as comparing GC content
values from different sampling methods with GC con-
tent of the original data, and tried to find a better sam-
pling method among them, then it could have decreased
the error.

On the other hand, the results of the most annotated
phyla from MG-RAST tests are Proteobacteria for 8
out of 10 cases and the set of the most annotated clas-
ses has only 3 different classes. This is because the meta-
genomics research data we tested here were chosen only
by their original sequence sizes, without any consideration

Most Annotated
Phylum of Original

Original MG-RAST ID Sample MG-RAST ID

Most Annotated
Class of Sample

Most Annotated
Class of Original

Most Annotated
Phylum of Sample

45395283 4,701,886.3 Proteobacteria
4510,219.3 4,701,884.3 Proteobacteria
4,510,1733 4,701,887.3 Proteobacteria
4,509,400.3 4,701,883.3 Proteobacteria
4562,385.3 4,701,888.3 Proteobacteria
4,538,997.3 4,701,892.3 Proteobacteria
4,539,575.3 4,701,885.3 Proteobacteria
4,587,432.3 4,701,891.3 Firmicutes
45559153 4,701,890.3 Ascomycota
45336113 4,701,889.3 Proteobacteria

Proteobacteria Actinobacteria (class) Actinobacteria (class)
Proteobacteria Deltaproteobacteria Deltaproteobacteria
Proteobacteria Gammaproteobacteria Gammaproteobacteria
Proteobacteria Actinobacteria (class) Actinobacteria (class)
Proteobacteria Gammaproteobacteria Gammaproteobacteria
Proteobacteria Alphaproteobacteria Deltaproteobacteria
Proteobacteria Alphaproteobacteria Alphaproteobacteria

Actinobacteria
Ascomycota

Proteobacteria

Actinobacteria (class)
Gammaproteobacteria

Alphaproteobacteria

Actinobacteria (class)
Gammaproteobacteria

Alphaproteobacteria
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Fig. 8 Phyla annotated from original - MG-RAST 1D:4587432.3
.
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= Fusobacteria
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sequences)
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of covering the studies of various phyla and classes. More
tests for different metagenomics studies covering more
divergent environment might be necessary.

In addition, tests of taxonomic annotation not only for
phyla and classes but also for genus and species need to be
followed in order to know the applicability of this sampling

approach better. Another type of sequence analysis rather
than taxonomy annotation needs to be tested, too.

Further quantitative studies to suggest statistical criteria
of a sample size, as well as studies of how to apply quality
filtering to sample sequences, will also make the approach
described here more reliable.

-

Fig. 9 Classes annotated from original MG-RAST 1D:4538997.3
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Conclusions

In spite of this obvious statistical limit, since analysis
from a small size sample of metagenomic sequences only
takes short time and uses small computing resources, we
can still use this approach to develop a standard or a
protocol to preview or pre-check metagenomics data,
before performing more accurate analysis with original
full sequences.

If there is a case where even a brief information of taxo-
nomic distribution is important, we can use estimation by
sample to study a biosample much quickly or to study
multiple biosamples as many as possible. For example, we
can suggest a strategy of metagenomics research, such as
analyzing many biosamples quickly or frequently with
small samples of sequences, as the first step of screening,
and as the second step, analyzing full original sequences
of a few biosamples that showed significant characters at
the first step.

If we apply this strategy to assessment of soil pollution
with bacteria diversity or to assessment of human health
with gut microbiota [18], we can screen out unpolluted
locations/low risk cases with this quick sample analysis,
and can perform more accurate original full sequence
analysis only for suspicious locations/cases. We might
perform small size sample studies to monitor bacterial
diversities of 100 or 1000 spots, covering a whole state
or a nation, on a monthly or even on a weekly basis to
discover and track environmental change.

Similarly, we can build a strategy to get taxonomic in-
formation of bacteria quickly for forensic studies [19, 20]
to save time for a criminal investigation. This approach
will be also helpful in developing countries where the cost
of computing resources is relatively heavy.

Methods
Mock community
The mock community with 10 bacteria strains was pre-
pared and their mixed genomes were shotgun sequenced
by Hiseq. (Table 4) They are the identical data prepared
for a study of Shin S [21].

Then, we selected only small parts from the original
full sequences (1,220,000 reads), which were named as

Table 4 Strains of the mock community

- Roseobacter denitrificans OCh114

- Staphylococcus epidermidis ATCC

- Polaromonas naphthalenivorans CJ2

- Chromobacterium violaceum ATCC 12472
- Corynebacterium glutamicum ATCC 13032
- Klebsiella pneumoniae KCTC 2242

- Pseudomonas stutzeri ATCC 17588

- Arthrobacter chlorophenolicus A6

- Escherichia coli Strain W

- Escherichia coli KCTC 2571
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“sample sequence set’s or “sample”s. We generated 176
different samples, in total, that are in 11 different sample
sizes. For each sample size, we tried 16 different sam-
pling methods. (176 = 11 x 16) The minimum size of the
sample was 100 reads (10,100 b) and the maximum size
of the sample was 50,000 reads (5,050,000 b).

The sampling methods are categorized as 4 selection
types, which are:

1. Selecting the reads from the start, after skipping K
number of the reads

2. Selecting the reads from the end, after skipping K
number of the reads

3. Selecting the reads from uniformly distributed
positions, after skipping K number of the reads

4. Random selection of the reads

We tried 4 different “K number”s for each type. The
random selection was tried for 4 different random seeds.
Therefore, the 16 different sampling methods applied to
each size of the samples.

To review the samples, we calculated GC content, which
is one basic way to know the quality of each sample [22].

To get information about taxonomic annotation, we
performed a simple BLAST search for the entire se-
quences of the mock community with respect to the
reference genome databases of the strains [23]. BLAST
is a widely used software that can search a query se-
quence out of a reference genome database. Therefore,
if there is a given read of metagenome sequences, a re-
searcher can perform a search to know whether it is
found as a hit in a reference genome database or not.
In this study, BLAST 2.3.0+ was used, with E-value op-
tion of le-10. The reference genome databases were
downloaded from GeneBank [24].

We performed the BLAST search for every single read
of the sequences of the mock community with reference
genome database for each of all 10 strains. The number
of the hits (denoted as ni) for genome database of each
strain was counted. After all the searches were com-
pleted, the sum (denoted as s) of all the numbers of the
hits counted for all 10 strains was calculated. (s =X ni)
Then, the ratio (ni/s) of each strain’s hit to the sum was
also calculated.

To get the information about the taxonomic annota-
tion from the samples, we, again, performed BLAST
search for each sample, in the same way as we did for
the original full sequences.

The purpose of this ratio calculation is to do simple
comparison between the numbers of the hits from the
original full sequences and the numbers of the hits from
the samples, not getting the actual information about
taxonomic abundance. Therefore, the size difference be-
tween reference genomes were not considered.
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Original Project Name Title of Sequences Biome Feature Material
MG-RAST ID
4,539,5283  GP corn unassembled jowa-corn-GAll-round1 terrestrial biome terrestrial habitat soil
45102193  Penang Mangrove BatuMaung_Penang Mangrove Biome Wetland Peat soil
Metagenome
4510,1733  BP_Sediments 2011-1933_120131_SN1035_0095_  marine benthic biome ocean marine
BDO4PVACXX_s_4_sequencefastq sediment
4,509,400.3  Hofmockel Soil Aggregate PF41-LM-July2012 / H14_ACTT Temperate grasslands  terrestrial habitat agricultural soil
COB KBASE GA_L007
4,562,3853  D.. Tarballs 0610 D.l.Tarball 0610 aquatic biome mesoscopic organic
physical object material
4,538,997.3  Marcell Experimental Forest MG-T3F-75cm_pair_retain Temperate needle-leaf forest soil
carbon cycling forests or woodlands
4,539,5753  GED prairie unassembled 1461.5.1405 trimmed terrestrial biome terrestrial habitat soil
45874323  HMP SRP002423 Bacterial SRS301868_joined terrestrial biome human-associated feces
Fungal Taxonomic Analysis habitat
4,555915.3  Beijing Hospital Air ICU-Intensive Care Unit terrestrial biome air conditioning unit air
MetaGenome Part1
4533611.3 M2_retainMode
MG-RAST means we used the sampling method of “selection type

To estimate the brief taxonomic information of the
original full sequences, denoted as “original” or “original
data” hereafter, in actual cases of bacteria metagenomes,
we prepared the samples from the existing research
data of metagenomics which were publicly available
in MG-RAST [15].

Our purpose was to see how this type of the samples
can capture the information of the original data in differ-
ent real world metagenomics studies. MG-RAST has
been a tool allows an external researcher to access the
results of existing metagenomics studies already per-
formed before.

We downloaded the sequence files of the public
MG-RAST projects with 10 most sequences. (Table 5).

Preparing the selected parts of the originals, in other
words, the samples, we selected 5000 reads from the
start of each original full sequences. (Table 6) This

Table 6 Original full sequences and samples from MG-RAST

1” and 0 as “K number”.

The only reason why we used this sampling method
among other selection types/K numbers was that down-
loading and handling the entire original sequence data
files of these real world studies was too heavy task. If we
use selection type 1 and 0 K number, then handling the
entire original sequence data files is not necessary. We
can just download only the beginning parts of the data
files and use them as samples. This reduces sampling
cost in terms of data preparation and data handling.

To compare the taxonomic annotation between the
originals and the samples, we uploaded the samples to
MG-RAST and analyzed them, using MG-RAST, as its
available version, that is MG-RAST pipeline 3.6 with its
default options. After analysis, MG-RAST gives a list of
annotated phyla, classes, and the numbers of how many
times they are annotated, as a result.

Original MG-RAST ID # Of b.p. in Original # Of Reads in Original

Sample MG-RAST ID # Of b.p. in Sample # Of Reads in Sample

4,539,528.3 37,968,936,507 520,346,510
45102193 56,396,775,865 419,709,973
4,510,1733 37,220,314,566 368,517,966
4,509,400.3 28,875,056,044 285,891,644
4,562,385.3 30,079,534,981 269,568,253
4,538997.3 36,830,201,101 242,692,675
4,539,575.3 19,954,890,565 233,720,367
45874323 24,845,881,691 220,848,213
4,555915.3 17,546,603,952 173,728,752
4,533,611.3 17,299,825,549 172,590,841

4,701,886.3 306,684 5000
4,701,884.3 1,011,153 5000
4,701,887.3 505,000 5000
4,701,883.3 505,000 5000
4,701,888.3 749,082 5000
4,701,892.3 1,179,840 5000
4,701,885.3 434,006 5000
4,701,891.3 671,320 5000
4,701,890.3 505,000 5000
4,701,889.3 813,458 5000
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Since, the original data were from the publicly accessible
project, we can also access the analysis results of them,
already performed before. Therefore, we can get the lists
of annotated phyla, classes and the numbers of how many
times they were annotated for the original data, too.

Then, the most annotated phyla from the originals and
the most annotated phyla from the samples were com-
pared, as well as the most annotated classes from the
originals and the ones from the samples.

To compare taxonomic diversities, the number of the
annotated phyla and classes was counted for each of the
originals and for each of the samples. Considering
over-annotation and/or mis-annotation of MG-RAST, a
threshold to ignore phyla and classes with less than 1%
hits of the total hits was later applied, in accordance
with the study of Peabody et al. [3].

Additional file

Additional file 1: Table S1. The smallest values among the ratios
calculated from 16 samples of each sample size (‘Ratio from the original”
is calculated from the original full sequences, which is same as the value
of Table 1). Table S2. The largest values among the ratios calculated
from 16 samples of each sample size ("Ratio from the original” is calculated
from the original full sequences, which is same as the value of Table 1).
Table S3. Standard deviation from the ratios calculated from 16 samples of
each sample size. (DOCX 25 kb)
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