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Abstract For groundwater conservation and manage-
ment, it is important to accurately assess groundwater
pollution vulnerability. This study proposed an inte-
grated model using ridge regression and a genetic
algorithm (GA) to effectively select the major hydro-
geological parameters influencing groundwater pollu-
tion vulnerability in an aquifer. The GA-Ridge
regression method determined that depth to water,
net recharge, topography, and the impact of vadose
zone media were the hydro-geological parameters that
influenced trichloroethene pollution vulnerability in a
Korean aquifer. When using these selected hydro-
geological parameters, the accuracy was improved for
various statistical nonlinear and artificial intelligence
(AI) techniques, such as multinomial logistic regres-
sion, decision trees, artificial neural networks, and
case-based reasoning. These results provide a proof of
concept that the GA-Ridge regression is effective at
determining influential hydro-geological parameters
for the pollution vulnerability of an aquifer, and in

turn, improves the AI performance in assessing
groundwater pollution vulnerability.
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Introduction

Demand for water supply is increasing due to
population growth and improvements in living stand-
ards (Goh 1995). Additionally, current climate change
effects mean that there are more regions where surface
water is scarce (Vano et al. 2010; Kundzewicz et al.
2008). However, the current water supply may not be
enough to meet the rising water demand because of
limited availability of clean freshwater resources (Ray
and O’dell 1993; Al-Adamat et al. 2003; Dixon 2005;
Gurdak et al. 2007). Groundwater is the major
freshwater resource (Winter et al. 1999; Kundzewicz
et al. 2008). Compared to the steady increase in usage
of groundwater resources, the efforts to maintain
groundwater conservation and contamination preven-
tion have yet to be further made (Rupert 1999; Lee et
al. 2007; Liu et al. 2008). Among such efforts, it is
important to make decision on which aquifers have
high priority in the policy of groundwater conserva-
tion and contamination prevention. Aquifers, which
are sensitive to potential contamination, may have
higher priority for groundwater conservation and

Environ Monit Assess
DOI 10.1007/s10661-011-2448-1

J. J. Ahn :Y. M. Kim :K. J. Oh (*)
School of Information and Industrial Engineering,
Yonsei University,
262 Seongsanno, Seodaemun-gu,
Seoul 120-749, South Korea
e-mail: johanoh@yonsei.ac.kr

K. Yoo : J. Park
School of Civil and Environmental Engineering,
Yonsei University,
262 Seongsanno, Seodaemun-gu,
Seoul 120-749, South Korea



prevention against contamination. As an index of
sensitivity of groundwater to contamination, “ground-
water vulnerability” is generally used in policy making
for groundwater conservation and contamination pre-
vention (Aller et al. 1987; Rupert 1999).

The DRASTIC model is one of the most common
methods to assess the vulnerability of groundwater
(Kalinski et al. 1994; Rosen 1994; Melloul and Collin
1998; Secunda et al. 1998; Kim and Hamm 1999).
This model is based on the concept of the hydro-
geological setting that is defined as a composite
description of all the major geologic and hydrologic
factors that affect and control the groundwater
movement (Aller et al. 1987). Once a DRASTIC
index has been computed, it is possible to identify
specific areas exposed to potential groundwater
contamination. The higher the DRASTIC index is,
the greater the groundwater vulnerability (Aller et al.
1987). Although the DRASTIC model is widely
applied, there are some limitations reported to
previous studies (Merchant 1994; Croskrey and
Groves 2008). When calculating the DRASTIC index,
the weights and parameters are selected by geological
features. However, the model was developed based on
certain type of aquifers in the USA, and it does not
applied well to aquifers with dissimilar geological
features. To apply the DRASTIC model in a different
aquifer, weights of hydro-geological parameters have
to be empirically determined. However, such empir-
ical determination may not be cost-effective. To
circumvent this limitation of the traditional ground-
water vulnerability model, artificial intelligence (AI)
algorithms may be good alternatives because of their
capability of finding optimal correlation between
input variables and target values without pre-existing
information on weight values of input variables.

Noisy input variables often hinder the power of AI
techniques to find optimal correlation between input
variables and target values (Kim et al. 2011). If
influential input variables can be selected from noisy
input variables, it would be beneficial for AI
techniques to find optimal correlation of groundwater
pollution vulnerability with hydro-geological charac-
teristics of an aquifer. To address this issue, herein we
proposed a novel method to pre-select influential
hydro-geological parameters for AI techniques assess-
ing groundwater pollution vulnerability. Ridge regres-
sion is very useful in adjusting for multicollinearity
(Smith and Campbell 1980). A common problem in

regression analysis is the significant correlation
between input variables that causes coefficient esti-
mates to be biased or unstable. However, ridge
regression can reduce this problem by producing
more stable estimators, which should result in a better
overall estimation model. Genetic algorithm (GA) is a
stochastic search technique that can explore large and
complicated spaces on the ideas from natural genetics
and evolutionary principle (Holland 1975; Goldberg
1989; Davis 1991). It has been demonstrated to be
effective and robust in searching very large spaces in
a wide range of applications (Klimasauskas 1992;
Fogel 1993; Koza 1993; Han et al. 1997). GA is
particularly suitable for multi-parameter optimization
problems with an objective function subject to
numerous hard and soft constraints. Based upon the
advantages of GA and ridge regression methods, we
developed a GA-Ridge regression method for select-
ing influential hydro-geological parameters in order to
improve the performance of AI techniques to assess
groundwater pollution vulnerability. To validate the
beneficial effects by the GA-Ridge regression method,
AI-estimated groundwater sensitivity to trichloroethene
(TCE) contamination was compared with field-
measured TCE sensitivity data from Woosan Industrial
Complex, South Korea.

Methods

Architecture of the proposed model

Phase 1: variable selection

The proposed GA-Ridge model consists of two main
phases. In phase 1, k is changed while conducting
input variable selection under the ridge regression.
For example, k and the input variable are selected
using GA simultaneously. Technically, for variable
selection, the parameter is assigned to 0 (discarding) or 1
(selecting), while the weight of k (a ridge constant) has
a real number range from 0 to 1.

Phase 2: validation of the GA-Ridge model

Phase 2 focuses on proving the usefulness of the input
variables selected by the GA-Ridge model. To
guarantee the validity of the model, we evaluate
groundwater vulnerability using AI techniques. The
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overall structure of the integrated model is shown in
Fig. 1.

Ridge regression

In linear multiple regression, a model is hypothesized
in the following form:

Y ¼ Xb þ "; ð1Þ
where E(ε)=0; E(ε′ε)=σ2I; and Xnxp is a full rank
matrix. To facilitate comparisons among models,
variables are standardized so that the matrix X′X is
in the form of a correlation matrix, and the vector X′Y
is the vector of correlation coefficients between the
criterion variable and all the input variables. The least
square estimates and their variance–covariance matrix

are then, respectively, bb ¼ X 0Xð Þ�1X 0Y and V bb� �
¼

s2I X 0Xð Þ�1. The parameters obtained are unbiased,

where E bb� �
¼ b. The difficulties in this standard

estimation are a direct consequence of the average

distance between bb and β. In particular, if L2 is the

distance between bb and β, then L2 ¼ bb � b
� �0 bb � b

� �
.

This expression can be represented as E L2ð Þ ¼
trace V ðpÞ½ �, which is equivalent to the following:

E L2
� � ¼ s2trace X 0Xð Þ�1 ¼ s2

Xp
i¼1

1

li
; ð2Þ

where λi is the ith eigenvalue of the X′X matrix. As the
vector of X deviates from orthogonality, λi becomes

smaller and bb can be expected to be farther from the
true parameter β. The ridge regression is an estima-
tion procedure based upon bb» ¼ bb»ðkÞ ¼ X 0X þ kIð Þ�1X 0Y

for the standardized variables where k is a ridge

constant. Therefore, E bb»� �
¼ X 0X þ kIð Þ�1 X 0Xð Þb ¼ Zkb,

which is a biased estimate. Note that when k=0, Zk=I

and E bb»� �
¼ b are the least squares unbiased

estimates. Furthermore, bb, for k≠0, is shorter than bb
(i.e.), bb»� �0 bb»� �

< bb0bb�. The variance–covariance

matrix of the ridge regression estimate is

V bb»� �
¼ s2Zk X 0X þ kIð Þ�1. The expected value of

the squared distance between bb»
and β is

E L2ðkÞ� � ¼ s2
Xp
i¼1

li
li þ kð Þ2 þ k2b0 X 0X þ kIð Þ�1b

¼ tr V bb»� �h i
þ biasð Þ2:

ð3Þ

The first term on the right side of formula (3) is a
continuous, monotonically decreasing function of k,
and the second term is a continuous, monotonically
increasing function of k. Therefore, if β′β is bounded,

there is a value of k such that E L2
»� �

< E L2ð Þ. To
summarize, the ridge regression procedure produces

estimates of bb»
that are biased and shorter than the

least square estimates bb, with a smaller variance, and
they are closer to the true value of the coefficients. In
other words, the entire objective of this procedure is
to take a little bias in the parameter estimation and
substantially improve the mean squares of the
estimates and the prediction.

The ridge regression analysis has two interest-
ing aspects. The first aspect is a ridge trace, or a

two-dimensional plot of bb»ðkÞ, and the residual

Fig. 1 Architecture of the
proposed model
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sums of squares [SSE(k)] for the values of k in the
interval [0,1]. The trace portrays the complex inter-
relationships between non-orthogonal input varia-
bles and the effect of these interrelationships on
the estimation of β. The second aspect is the
determination of a value of k that provides a better
estimate of β. It should be pointed out that, when the
input variables are uncorrelated, the least squares
estimates obtained are uniformly scaled by the
quantity 1/(k+1), and the relative value of the
regression coefficients is then independent of the
choice of k.

Genetic algorithm

The GA performs the search process in four stages:
(1) initialization, (2) selection, (3) crossover, and (4)
mutation (Davis 1991). In the initialization stage, a
population of genetic structures (known as chro-
mosomes) that are randomly distributed in the
solution space is selected as the starting point of
the search. After the initialization stage, each
chromosome is evaluated with a user-defined
fitness function. The goal of the fitness function
is to encode numerically the performance of the
chromosome. For real-world applications of opti-
mization methods, such as a GA, the choice of the
fitness function is the most critical step. In this
study, the GA plays a role in the optimization of
variable selection and coefficients (or weights) for
the input variables of the ridge regression to assess
groundwater vulnerability.

Optimization scheme

The regression matrix formula (1) can be rewritten as
follows:

Yi ¼ b0 þ D1b1Xi;1 þ � � � þ DpbpXi;p þ "i; i

¼ 1; 2; . . . ; n: ð4Þ

Then, we assign the optimal coefficients

bk :
Pp
k¼1

bk ¼ 1; k ¼ 1; 2; � � � ; p
� �

to each input var-

iable, which minimizes the mean squared error (MSE)
(5), while, simultaneously, D1, D2, Dp are changed to
0 or 1 denoting discard or selection of an input

variable, respectively, and k is assigned to a real
number [0, 1] through the GA process.

MSEðY Þ ¼ 1

n� 1

Xn
t¼1

Yt � bY t

� �2
ð5Þ

DRASTIC model

To compare the performance of the GA-Ridge
regression method and AI technique with the tradi-
tional pollution vulnerability model, the DRASTIC
model developed by Environmental Protection Agen-
cy was used in this work. The DRASTIC model has
been used to identify areas that are more vulnerable to
contamination than others, or to prioritize areas that
need more groundwater monitoring. This model
includes various hydro-geological settings whose
physical characteristics affect groundwater qualities
on a regional basis (Aller et al. 1987). The DRASTIC
model has seven parameters representing several
hydro-geological properties, including depth to water
(D), net recharge (R), aquifer media (A), soil media
(S), topography (T), impact of the vadose zone (I),
and hydraulic conductivity (C). Their definitions are
presented in Table 1. The DRASTIC INDEX (DI),
which reflects groundwater pollution vulnerability, is
calculated using the following formula (Aller et al.
1987):

DI ¼ DRDW þ RRRW þ ARAW þ SRSW þ TRTW

þ IRIW þ CRCW ; ð6Þ

where

DR and DW Rating and weight assigned to the depth
to water table

RR and RW Rating and weight for range of aquifer
recharge

AR and AW Rating and weight assigned to aquifer
media

SR and SW Rating and weight for soil media
TR and TW Rating and weight assigned to

topography
IR and IW Rating and weight assigned to vadose

zone
CR and CW Rating and weight given to hydraulic

conductivity
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According to the DRASTIC model guidelines, the
rating and weight values are assigned to the hydro-
geological parameters of each sampling point. The
weight values of the hydro-geological parameters are
presented in Table 1.

Study site and data collection

In this study, data and information on TCE contam-
ination and hydro-geological properties were obtained
from previous reports by the Korean Environmental
Management Corporation for the Woosan Industrial
Complex located at Wonju City, Kangwon Province,
South Korea (Lee et al. 2003). For the following data-
mining procedures, the TCE data and their
corresponding hydro-geological properties were col-
lected from February and August in 2003, 2004, and
2008, when TCE contamination and hydro-geological
properties were well characterized at the site. We
calculated the normalized change in TCE concentra-
tion between two TCE sampling points at a location
for the target values (formula (7)), and used these
values as a quantitative measure of TCE sensitivity in
the studied site.

TCE sensitivity ¼ Ciþ1 � Ci

Ciþ1 þ Cið Þ=2 ð7Þ

Where Ci+1 and Ci correspond to the TCE
contamination concentrations at t= i+1 and t= i,
respectively, at a location. Prior to the AI procedures,
the TCE sensitivity data were divided into three classes
called “classes 1, 2, and 3.” The standard for the
classification process was based on the TCE sensitivity

data and on the number of wells that corresponds to the
TCE sensitivity. In other words, the number of wells
was mapped on a table according to the TCE sensitivity
data, and then three classes were divided so that all the
classes would contain an equal number of wells (Fig. 2).
The classified TCE sensitivity data were used as the
target values in this study.

Model training and testing

For proper training and testing performance, the
number of training and testing data was evenly
distributed between classes (Table 2). In this study,
we evaluated the accuracy of the assessment models
by comparing two different assessment models. One
model used seven input variables and the other used
the selected input model based on the GA-Ridge
model. The accuracy was measured in hit rates of the
testing set. The entire dataset was randomly parti-
tioned into the training set (80% of the dataset for
each class) and the testing set (remaining 20% of the
whole dataset). The training dataset was used to find
an optimal weight for the genetic learning. The testing
dataset, on the other hand, was used to evaluate the
weight and verify the forecasting accuracy of TCE
sensitivity. As a result, the number of training and
testing datasets was evenly distributed in each TCE
sensitivity class (Table 2).

Compared AI techniques

In this study, we used nonlinear statistical and AI
techniques to ensure the validity of the GA-Ridge

Table 1 Descriptions and weights of the hydro-geological parameters used in the DRASTIC model (Aller et al. 1987)

Parameters Description Weight

Depth to water (D) The depth from the ground surface to the water table, deeper water table levels imply
lesser chance for contamination

5

Net recharge (R) The amount of water which penetrates the ground surface and reaches the water table,
recharge water represents the vehicle for transporting pollutants

4

Aquifer media (A) The saturated zone material properties, which controls the pollutant attenuation process 3

Soil media (S) Uppermost and weathered part of the ground, soil cover characteristics influence the
surface and downward movement of contaminants

2

Topography (T) The slope and slope variability of the land surface, steeper slopes signify higher
groundwater velocity

1

Impact of vadose zone media (I) The zone above the water table which is unsaturated, it controls the passage and
attenuation of the contaminated material to the saturated zone

5

Hydraulic conductivity (C) The ability of the aquifer materials to transmit water, which, in turn, controls the
rate at which groundwater will flow under a given hydraulic gradient

3
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model for the groundwater vulnerability assessment
model. These techniques included multinomial logis-
tic regression (MLR), decision trees (DT), artificial
neural networks (ANN), and case-based reasoning
(CBR). These methods are popular classifiers cur-
rently being used.

In general, logistic regression is one of the nonlinear
statistical methods used to estimate the probability of a
binary outcome with upward or downward status
(Hosmer and Lemeshow 1989). As a result, MLR
models are well suited to forecasting problems with a
categorical output variable. The MLR model assumes
the following parametric regression model:

Ytþl ¼ 1= 1þ exp � b0 þ b1X1t þ b2X2t þ . . .þ bpXpt

� �� 	
 �
;

ð8Þ
where, β0, β1,…,βp are the regression coefficients.

DT is broadly used for predictive modeling since it
is easy to interpret and can model complex input–
output relations with an automatic handling of missing
values (Breiman et al. 1984; Cherkassky and Mulier

1998). We adopted the standard CART method by
Breiman et al. (1984), which was developed based on
an inductive learning approach. In addition, the Gini
diversity index was employed to split tree nodes, and
cross-validation was used to prune the trees.

CBR is a problem solving method that reuses cases
and experience to find an appropriate solution to a given
set of new cases (Shin and Han 1999). In this study, the
nearest neighbor approach was used to retrieve the
most similar cases. In addition, Euclidean distance
and equally weighted voting methods were used for
the distance and combination functions, respectively.

In this study, ANN was considered the most
nonparametric method because of its data overfitting
tendency (White 1989; Kaastra and Boyd 1996;
Zhang et al. 1998). Among various ANN, a three-
layer, fully connected back-propagation neural net-
work (BPN) was used in this work. BPN training
consisted of trial-and-error experiments to build an
appropriate architecture for the BPN.

Results and discussion

DRASTIC-estimated vs. field-observed TCE
sensitivities

To examine the applicability of the traditional
DRASTIC model for assessing the sensitivity of the

Fig. 2 Histogram of the
TCE sensitivity data from
the studied site

Table 2 Distribution of training and testing data

TCE sensitivity class Training data Testing data

Class 1 36 10

Class 2 36 10

Class 3 36 10

Total 108 30
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Korean aquifer to TCE contamination, we compared
the DRASTIC-estimated vulnerability (DRASTIC
index) values with the field-observed vulnerability
(TCE sensitivity classes). No distinct trends were
observed in response to the different TCE sensitivity
classes (Fig. 3). This result indicates that the
traditional DRASTIC model failed to describe the
observed TCE sensitivity data in response to the
hydro-geological characteristics of the aquifer site.
Uncertainty in the TCE contamination source might
be a possible explanation for the inconsistency
between the DRASTIC model and the field-observed
TCE sensitivity data. However, such uncertain effects
may be compromised by the pre-treatment of TCE
sensitivity data by normalization and classification. A
plausible explanation may be that the weight values
for the hydro-geological parameters guided by the
traditional model (Table 1) are not suitable to reflect
the hydro-geological characteristics of the studied
site. This supports the need for an alternative

approach to find the optimal correlation between the
field-observed TCE sensitivity and hydro-geological
parameters using AI techniques.

GA-Ridge-selected hydro-geological parameters

Among the seven hydro-geological parameters, GA-
Ridge regression resulted in the selection of four
influential parameters including depth to water, net
recharge, topography, and impact of vadose zone
media (Table 3).

In the traditional DRASTIC model, the weight
values for the depth to water (D), impact of vadose
zone media (I), and net recharge (R) were relatively
large (i.e., Dw and Iw=5; Rw=1; Table 1). This is
consistent with the finding from the GA-Ridge
regression. However, the weight value for topography
(T) was low in the DRASTIC model, while the GA-
Ridge regression determined that topography was as
an influential hydro-geological factor at the specific
site. The DRASTIC model was developed based upon
studies from North American regions with relatively
flat and homogeneous hydro-geological settings.
Meanwhile, the aquifer area of this study exhibited

Fig. 3 DRASTIC index
values and TCE sensitivity
classes at the Woosan
Industrial Complex

Table 3 The original (unselected) and GA-Ridge-selected
(preselected) hydro-geological parameters

Input variables

Unselected D (depth to water), R (net recharge), A
(aquifer media), S (soil media), T (topography),
I (impact of vadose zone media), C
(hydraulic conductivity)

Preselected D (depth to water), R (net recharge), T
(topography), I (impact of vadose
zone media)

Table 4 Hit rates for various AI techniques

ANN DT MLR CBR

Unselected 0.44 0.43 0.40 0.50

Preselected 0.47 0.61 0.47 0.59
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more dynamic topography and heterogeneous hydro-
geological settings. The hydro-geological character-
istics of the Woosan Industrial Complex site may
provide an explanation for the selection of topography
by the GA-Ridge regression. In addition, this may
also explain why the DRASTIC-estimated pollution
vulnerability poorly correlated with the field-observed
TCE sensitivity data (Fig. 3).

GA-Ridge regression improved AI performances

Using the selected hydro-geological parameters by the
GA-Ridge regression, our groundwater vulnerability
assessment models with various nonlinear statistical
and AI techniques (MLR, DT, CBR, and ANN in this
study) were constructed as described in the method-
ology, and their hit rates were compared with the
original assessment model without any selection
among the seven hydro-geological parameters.

As shown in Table 4, the GA-Ridge regression
improved the accuracy of all the tested AI methods,
providing a proof of concept that the GA-Ridge
regression is able to select hydro-geological parame-
ters influencing TCE contamination sensitivity in the
site. However, the magnitudes in improved accuracy
differ among the tested AI techniques. Compared to
the model using all seven hydro-geological parame-
ters, the ANN showed slight improvement (3% for
ANN), while the CBR, MLR, and DT models showed
significant improvements (7% for MLR, 9% for CBR,
and 18% for DT). These results suggest that the use of
a GA-Ridge regression is effective at improving CBR,
MLR, and especially DT model performances, but not
effective for ANN. Possible explanations for these
results are that ANN is not sensitive to the selection
of input variables (Jacobs et al. 1991) and/or that the
number of data points (N=138) was not great enough
for an accurate ANN performance (Ryan et al. 1998).

Conclusion

This study proposes the GA-Ridge model to select
proper hydro-geological parameters influencing
groundwater pollution vulnerability. The traditional
DRASTIC-estimated groundwater TCE vulnerability
data showed no correlation with the field-observed
TCE sensitivity data from the Woosan Industrial
Complex area, indicating an inapplicability of the

traditional groundwater vulnerability model to reflect
the hydro-geological characteristics in the site. The
GA-Ridge regression determined four hydro-
geological parameters (depth to water, impact of
vadose media, net recharge, and topography) influ-
encing TCE contamination vulnerability in the aquifer.
When using the selected input variables, the accuracy of
AI models was improved when compared to those
without the pre-selection steps. The GA-Ridge regres-
sion resulted in a significant improvement in the DT,
CBR, and MLR performances. These finding provide a
proof of concept that the GA-Ridge regression is
capable of effectively selecting influential hydro-
geological parameters in a contaminated aquifer, and
such pre-selection of input variables can improve the
accuracy of AI techniques for assessing groundwater
pollution vulnerability, which is a crucial factor in
planning and policy making for groundwater conserva-
tion and protection.
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