GPU-BASED ACCELARATION OF
DENOISING PYROSEQUENCED AMPLICONS

Byunghan Lee and Sungroh Yoon

Advanced Computing Laboratory
Korea University

Introduction

— NGS, Pyrosequencing

— Pyrosequencing Noise

— Removing Pyrosequencing Noise

Methods

— AmpliconNoise Profiling
— GPGPU, CUDA

— Parallelize AmpliconNoise
— Optimization

Results & Discussion
Summary

Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Next Generation Sequencing (NGS)

a Roche/454, Life/APG, Polonator
Emulsion PCR

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion
100200 million beads

PCR Break Template /_g@*ﬁ&
lificati [si dissociati 3
amplification emulsion issociation % .#:5 3‘,’5“

))/
->
N 2
Primer, template, Chemically cross-
dNTPs and polymerase linked to a glass slide
b lllumina/Solexa € Helicos BioSciences: one-pass sequencing

Solid-phase amplification Single molecule: primer immobilized

One DNA molecule per cluster

Sample preparation
DNA (5 pg)

Template
dNTPs

and
polymerase

Bridge amplification Billions of primed, single-molecule templates

Source: Metzker, M. L., DNA sequencing with chain-terminating inhibitors.

KOREA

Advanced Computing Laboratory
http://acl.korea.ac.kr

Pyrosequencing

* Roche 454

Preparation of DNA fragments

~
Emulsion PCR
<3

@ — Seuencig

SEQUENCING

» P
i olymerase
- ATP . Sulfurylase

PPi
Luciferin .Luciferase
Detection é— Oxyluciferin
Pyrogram
Apyrase

dNTP =——> dNDP + dNMP + phosphate

dNTP —> ADP + AMP + phosphate

Source: Siqueira et al., Pyrosequencing as a tool for
better understanding of human microbiomes.

KOREA

5 Advanced Computing Laboratory

http://acl.korea.ac.kr

Pyrosequencing Noise (1/3)

* Flowgram Signal Intensity Distributions

15 T T T T

Raw data

0.03 103 009 0.12 149 0.09 0.09 101

T c A G
10— —

The result read (wrong)

ﬂ | C T G
n=2
n=3

5 =
The true read (correct) ‘
L L g C TT G
0 1 I L l L l

Signal intensity f

Probability distribution P(f|n)

Source: Quince et al., Removing Noise From Pyrosequenced Amplicons.

— The observed light intensities do not perfectly match the homopolymer lengths.

6 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA
'l!l'

Pyrosequencing Noise (2/3)

* PCR per Base Error Probabilities
— Erroneous nucleotide transition during PCR amplification.

— The nucleotide transition probabilities were calculated by comparing all reads with
pyrosequencing noise removed from the three ‘Even’ V2 data sets with the known
control sequences[1].

A 0.9995 7.2e-6 7.7e-6 5.le-4 C A C A A G G C
C 1.1e-05 0.9996 4.1e-4 2.1e-6 ‘
The true read (cprrect)
T 9.0e-6 5.7e-4 09994 1.4e-5
C A T A A G G C
G 3.5e-4 3.2e-6 2.1e-5 0.9996

Source: Quince et al., Removing Noise From Pyrosequenced Amplicons.

Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Pyrosequencing Noise (3/3)

* Chimeras

— Sequences that are composed of two
or more true sequences.

— Chimeras are generated when incomplete
extension occurs during the PCR process.

— These generated sequences are quite
different from either parent.

* We are focusing on the first two
sources of error (shown on slides 6 & 7).

Locus A Y55 N] ==Y
555 (@ PCR cycl)
Y TR - T
IES B = a

v

Locus B 3 SIS
T
N
" Ty
- r .
IES 5@”’ e

il
Chimerie 555
strand
===
ChimericSEEs]
product 5= NN NN

Figure 1 - Schematic representation of three successive PCR cycles re-
lated to formation of chimeric products. The illustrations represent two
isolated microsatellite loci with the same repeat motif (light hatched re-
gion) but different flanking regions. White boxes show flanking regions of
locus A, while black boxes show the flanking regions ol locus B. Adapters
lunctioning as primers are shown as checkered boxes. [n the neyele, anin-
completely extended strand (IES) was produced from locus A, which ends
in the repeat and serves as a primer for locus B in the n + | eyele. A chime-
ric strand is generated, which becomes double-stranded in the next cycle
in = 2) and which can be amplified in the following cyeles (not repre-
sented).

Source: Roratto et al., PCR-mediated recombination in
development of microsatellite markers:
mechanism and implications.

Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

AmpliconNoise

e Collection of programs for the removal of noise from 454 sequenced PCR
amplicons developed by Quince et al. (2011).

* Consists of 12 steps in dealing with Titanium reads,

FastaUnique PyroDist SeqDist

FCluster FCluster

FCluster PyroNoiseM SeqNoise

SplitClusterEven

: Remove Remove
Split Input Data Pyrosequencing Noise PCR Noise
9

Create OTUs

Advanced Computing Laboratory [oae:
http://acl.korea.ac.kr

Removing Noise (1/4)

Flowgram #
Each Flowgram

| |12]sfa]s]6]
il

1
|‘|||I

Flowgram #

I 1)

- - —

e—
o—

® 0 006

A ILB)

[[wosers [wovei [N voceis v [alc|. | cQ wewz [alc]r].]c]
1 0

|I|‘ |||I Pairwise Distance Matrix
Position

Flowgram 1

Flowgram 2 0 1 Flowgram 1 Flowgram 2
Flowgram 3 Flowgram 5

Flowgram 6 0 1 Flowgram 4 Flowgram 6

A\

(1) Calculating Pairwise Distance
(2) Hierarchical Clustering

(3) Creating Model

(4) EStep

(5) M Step

10 Advanced Computing Laboratory

http://acl.korea.ac.kr

Removing Noise (1/4)

Flowgram # I

| (a2 slels]e

Each Flowgram

Flowgram #

I 1)

- - —

e—
o—

|I|‘ |||I Pairwise Distance Matrix
Position

Y

[[wosers | wovei [N voceis v [alc|. | c R wewz [alc]r].]c]
1 0

Flowgram 1

Flowgram 2 0 1 Flowgram 1 Flowgram 2
Flowgram 3 Flowgram 5

Flowgram 6 0 1 Flowgram 4 Flowgram 6

A\

(1) Calculating Pairwise Distance
(2) Hierarchical Clustering

(3) Creating Model

(4) EStep

(5) M Step _

11 Advanced Computing Laboratory

http://acl.korea.ac.kr

Removing Noise (1/4)

Each Flowgram

Intensity

Flowgram # I

| (a2 slels]e

Flowgram #

(1)

- - —

||.‘|||I oot Pairwise Distance Matrix ® @ 066
e
EEEITErTE ¢ TR R
Flowgram 1 0.89 0.11
Flowgram 2 0.06 0.94 Flowgram 1
Flowgram 3
Flowgram 6 0.08 0.92 Flowgram 4
Ao
(1) Calculating Pairwise Distance
(2) Hierarchical Clustering
(3) Creating Model
(4) EStep
(5) M Step

12 Advanced Computing Laboratory

http://acl.korea.ac.kr

Removing Noise (1/4)

Each Flowgram

Intensity

Flowgram # I

| (a2 slels]e

Flowgram #

(1)

- - —

||.‘|||I oot Pairwise Distance Matrix ® @ 066
e
EEEITErTE ¢ TR R
Flowgram 1 0.92 0.08
Flowgram 2 0.11 0.89 Flowgram 1
Flowgram 3
Flowgram 6 0.13 0.87 Flowgram 4
Ao
(1) Calculating Pairwise Distance
(2) Hierarchical Clustering
(3) Creating Model
(4) EStep
(5) M Step

13 Advanced Computing Laboratory

http://acl.korea.ac.kr

Removing Noise (2/4)

* Removing Sequencing Noise|[1, 2, 4]

— Define distances for given flowgram f = (f, ", fu)-

M
d(f,0) = —log(]] P(filui =n))/M
i=1
JVT J—
= Z —log [P(fi|lu; =n)]/M (U: perfect flowgram, M : flowgram length)
=1

M
= > d(filui =n)/M
=1
— To define the likelihood, the density of the observed flowgrams are:

cxpl=d'(fi,Uj) /o)

Tp

F(ﬁ|5‘j — [jj) = (S: modeled sequence, 0p: characteristic cluster size)

— The likelihood of the complete data set D is then:

N L
L(D|L9T17 7TL;§11"' 9‘STL) = H[ZTJF(J?%lS_J)]

i=1 j=1
(D: observed data set, L: # models, N: # flowgrams, t: relative frequency)

14 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Removing Noise (3/4)

* Removing Sequencing Noise|[1, 2, 4]
— Using an expectation-maximization algorithm to infer the true sequences and their
frequencies.

M step: Find the perfect flowgram with the smallest total distance to all the reads.
a— — N - —
U; = Q; where | = mgn[z Zi d (fis Q1)) (Q: unique perfect flowgram)

=1

Calculate new distances d’ (f;, Uj).

E step: Calculate new Z; ; as the conditional probabilities that sequence j generated

flowgram i.
d/ _i: i’
A Tiexp(—i(j;p%))
Zi,j — L d’ _i U
Sy mrep(— TURT)

Repeat until convergence.

15 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Removing Noise (4/4)

« Removing PCR Point Error[1, 2, 4] - | A | ¢ | T | & |

_ 09995 7.2e-6 7.7e-6 5.led
e(r,5) = —log[P(r]5)]

A

C 1.1e-05 0.9996 4.1le4 2.1e-6
T 9.0e-6 57e-4 0.9994 1.4e-5
G

= —log[][P(+' =ml|s' =n)]/A
=1

A

= Z —log [P(r* = m|s' =n)]/A
=1
(e: distance, 7: given read, S: true sequence, A: alignment length)

3.5e-4 3.2e-6 2.1e-5 0.9996

— Use mixture model to cluster the sequences.

— Reads are assumed to be distributed as exponentially decaying functions of their
sequence error corrected distance from true sequences.

— Maximum likelihood fit of the mixture model can be obtained using an Expectation-
Maximization (EM) algorithm.

— Identical to previous noise remover step except that in previous step, distance is
defined between flowgrams, but here it is defined between sequences.

Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

16

Profiling (1/3)

* The tests were run on the following hardware:
— CPU: 2x Intel Xeon E5405 @ 2.00Ghz
— RAM: 16GB
— OS: Ubuntu Server 10.04.3 LTS 64bit

* The tests were run on the following data set[1]:

— Generated by pyrosequencing a mixture of 91 full length 16S rRNA clones obtained
from an Arctic soil sample.

— # of Reads: 62,873

18 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Profiling (2/3)

* Using MPI

1. FastaUnique m 3. FCluster 4. SplitClusterEven

00:00:20 18:17:32 00:30:24 00:00:00

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist

00:02:51 00:06:11 00:18:22 39:20:30

9. FCluster 10. SeqNoise 11. NDist 12. Fcluster

00:11:26 00:11:31 00:00:04 00:00:00

— When parallelized by MPI, it takes 58h 59m 12s using 8 cores.

Advanced Computing Laboratory [oo
19 http://acl.korea.ac.kr

Profiling (3/3)

0% Run time

O%iTO%

— Some steps take comparably long time, so it needs to be parallelized by improved

M FastaUnique

® NDist

M FCluster

W SplitClusterEven
M PyroDist

M FCluster

® PyroNoiseM

M SeqDist

® FCluster

solution.

— Above target steps are dealing with Needleman-Wunsch algorithm which can be
parallelized by CUDA.

Advanced Computing Laboratory
http://acl.korea.ac.kr

20

KOREA

Needleman-Wunsch Algorithm

Pairwise distance matrix
— Time complexity = 0(n*N?)
— Space complexity = 0(n?N?)
(n: # flowgram, N: read length)

Dynamic programming

— Fi,j = max(Fi_l,j_l + S(AL,B]), Fi,j—l + d, Fi—l,j + d)

(F: each cell, S:score, d: gap penalty)

0>-2>5 45 -6

0>-2>5 45 -6

A _2‘1' A -2W\1 > -1
A 4 ‘ A 4
A -6 P
c g c g

1. Initialize Score Matrix 2. Calculate each Cell

21

=

| [alale
0 2 4 -6

0o >» > »

4
-6
8

-2

X

3. Backtracking

Advanced Computing Laboratory
http://acl.korea.ac.kr

Needleman-Wunsch Algorithm

* Example
— Consider the two DNA sequences to be globally aligned are:

ATCG (x = 4, length of sequence 1)
TCG (y = 3, length of sequence 2)

— Scoring Scheme
Match Score = +1
Mismatch Score = -1
Gap Penalty = -1

22 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Needleman-Wunsch Algorithm

* Example
— Initialization Step

Create a matrix with x + 1 rows and y + 1 columns.

The 1%t row and the 15t column of the score matrix are filled as multiple of gap
penalty.

I N N A
-1 -2 -3

0

O O - >
NG}

23 Advanced Computing Laboratory
http://acl.korea.ac.kr

Needleman-Wunsch Algorithm

* Example
— Scoring Step

The calculation for the cell F(2,2):
Diagonal = F(i—1,j — 1)+ 5(,j)) =0+ —-1=—-1
Up=F(i-1,))+g=—-1+-1=-2
Left=F(G,j—1D)+g=—-1+-1=-2

I I N N N

0 -1 -2 -3

-1 \ -1 \ -2 \ -3
L S ———

-3 -1 l\‘ 1T —>
-4 -2 l 0 l\l 2

O O - >
NG}

24 Advanced Computing Laboratory

http://acl.korea.ac.kr

Needleman-Wunsch Algorithm

* Example

— Backtracking Step
Trace back starts from the last cell, i.e. position (x,y) in the matrix.
Gives alignment in reverse order.

| T | c | G
0 T\ -1 \ -2 \ -3

A 1 1 -2 3
T 2 \ 0 < -1 < 2
C 3 -1 T\ 1 <— 0
G -4 2 T 0 T\ 2

Sequencel: ATCG

|11
Sequence2: - TCG

’5 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Parallelism

* Task Parallelism (CPU)

— Focuses on distributing execution processes across different parallel computing
nodes.

* Data Parallelism (GPU)
— Focuses on distributing data across different parallel computing nodes.

\ \

No Parallelism (Serial) Instruction Parallelism
cheese is sliced with a single blade cheese is sliced with multiple blades

>
W\

Data Parallelism Task Parallelism
black is cut in half and then sliced two different blocks are sliced
with different methods

* Needleman-Wunsch algorithm can be accelerated by exploiting data parallelism.

26 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

* General-Purpose Computation on Graphics Processing Units
— High-performance many-core processors
— Can be used to accelerate a wide variety of applications

27 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

CPU vs. GPU

* GPU is specialized for compute-intensive, highly parallel
computation.

— No data dependency between the pixel operations.

* More transistors are devoted to data processing rather than data
caching and flow control.

GT200
1000

==4==NVIDIA GPU
—8—intel CPU gso G92

Control ALU ALU

750

ALU ALV

Peak GFLOP/s
wm
(=]
<

250 3.2 GHz
3.0 GHZ Harpertown

_ iy PP
0

CPU GPU Jan Jun Apr Jun Mar Nov May Jun
Source: NVIDIA, NVIDIA CUDA C Programming Guide.
Advanced Computing Laboratory [
28 http://acl.korea.ac.kr

Compute Unified Device Architecture

Designed and developed by NVIDIA

C programming language on GPUs

Requires no knowledge of graphics APls or GPU programming
Easy to get started and to get performance benefits

KOREA

29 Advanced Computing Laboratory

http://acl.korea.ac.kr

Heterogeneous programming

— GPU is viewed as a compute device operating as a coprocessor to the main
CPU(host).

A function compiled for device is called a kernel.
A kernel is executed by a grid of thread blocks.
A thread block is a batch of threads.

— Sharing data through shared memory.

— Synchronizing their execution.

Host Device
(CPU) (GPU)

Threading
Resources

Dozens Billions

Threads Heavy Light

Advanced Computing Laboratory
http://acl.korea.ac.kr

30

KOREA

Device Memory Hierarchy

* Device code can:

(Device) Grid

— R/W per-thread register

Block (0, 0) Block (1, 0)

e e e e

Thread Thread Thread Thread o Read Only per-grld ConStant and
0.0 L 0.0 _Jil @1 _f 0.1 texture memories

— R/W per-thread local memory

— R/W per-block shared memory
— R/W per-grid global memory

* Host code can:

— R/W per-grid global, constant and
texture memories

Source: NVIDIA, NVIDIA CUDA C Programming Guide.

31 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Features of Device Memory

L cow | ke e e

Register 1 thread Thread
Local no no/yes R/W 1 thread Thread
Shared yes n/a R/W Block Block
Host
Global no no/yes R/W Program Allocation
Host
Constant no yes R Program allocation
Host
Texture no yes R Program allocation

* Caching depends on compute capability.
* Minimize data transfer between the host and the device.

GTX 280 G?U x4 Host.mem x4
Device mem Device mem

Peak
bandwidth

141 GBps 8 GBps

Source: NVIDIA, NVIDIA CUDA C Programming Guide.

32 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

CUDA Programming Model

C Program
Sequential
Execution Host
Serial code 5
Parallel kernel Device
Kernel0<<<>>> () i
Grid 0

Block (0, 0) = Block (1, 0) | Block (2, 0)

Block (0, 1) Block(1,1) Block(2,1)

R R

Serial code Host

, i

Source: NVIDIA, NVIDIA CUDA C Programming Guide.

33 Advanced Computing Laboratory
http://acl.korea.ac.kr

CUDA Code (1/2)

#include "cuda.h“
#include <stdio.h>

const int BLOCK_SIZE = 16;

__global _ void VecAdd(float* A, float* B, float* C);

int main ()

{

float *h A, *h B; // m-by-n matrix for host
float *d A, *d B; // n-by-m matrix for kernels

// Initialize input vectors

// Allocate vectors in device memory
cudaMalloc ((void**) &d A, sizeof (float)*m*n); // m-by-n
cudaMalloc ((void**) &d B, sizeof (float)*m*n); // m-by-n

// Copy vectors from host memory to device memory
cudaMemcpy (d A, h A, sizeof(float)*m*n, cudaMemcpyHostToDevice) ;
cudaMemcpy (d B, h B, sizeof(float)*m*n, cudaMemcpyHostToDevice) ;

dim3 dimBlock (BLOCK_SIZE 0 BLOCK_SIZE) 5
dim3 dimGrid(l+m/dimBlock.x, l+n/dimBlock.y) ;
VecAdd<<< dimGrid, dimBlock >>>(d A, d B, d C); // Invoke kernel

// Copy result from device memory to host memory
cudaMemcpy (h_C, d C, size, cudaMemcpyDeviceToHost) ;
cudaFree (d_A) ;cudaFree (d B) ;cudaFree(d C); // Free device memory

Source: NVIDIA, NVIDIA CUDA C Programming Guide.

34

Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

CUDA Code (2/2)

* Kernel Function

— Executed on the GPU, “Main function of a thread in the device”

— Single program multiple data (SPMD)

// Function definition
void VecAdd (float* A, float* B, float* C, int N)
{ for(int i = 0; i < N; i++)
c[i] = a[i] + b[i];
}

// Kernel definition

__global_ _ void VecAdd(float* A, float* B, float* C)

{ int idx = blockDim.x*blockIdx.x+threadIdx.x;
C[i] = A[i] + B[i];

}

— Let’s assume N = 16, blockDim = 4 (# of threads per block)

blockldx.x =0 blockldx.x =1 blockldx.x = 2
blockDim.x =4 blockDim.x =4 blockDim.x =4
threadldx.x =0,1,2,3 threadldx.x =0,1,2,3 threadldx.x =0,1,2,3
i=0,1,2,3 i=4,5,6,7 i=8,910,11

35

CPU
Program

CUDA
Program

blockldx.x = 3
blockDim.x =4
threadldx.x =0,1,2,3
i=12,13,14,15

Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Parallelize AmpliconNoise (1/3)

* Divide Score Matrix | J1f2{3faf[s[e]7]

— Device memory is limited, we divide score matrix.

— The size of window is determined by global memory.

window size |

3|

— In each step, 4 data are needed during Needleman-Wunsch algorithm.

e Determine Where To Store Data

— Performance depends on using appropriate memory.

Created by previous step

® o
v
o0 Created by current step

Advanced Computing Laboratory
http://acl.korea.ac.kr

36

KOREA

Parallelize AmpliconNoise (2/3)

* Using Global Memory

— Stores previous row-wise scores.
| | clajclalafs[slclc]slclclalalT

|

— Stored previous scores are used by
a thread during next iteration.

Stored in shared memory B3
Stored in global memory g

—

0o o0 6 > > 0O

B
!

C

C

A

* Using Shared Memory A
— Stores column-wise sequences and current scores.
— Stored sequences are shared by a block.

— Stored current scores are used by a thread.

37 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Parallelize AmpliconNoise (2/3)

* Using Global Memory
— Stores previous row-wise scores.

— Stored previous scores are used by !gngnnnnn

a thread during next iteration. a3 13 [s

A 3 2 3 2} 3
Stored in shared memory R ﬁ

G 1 8 1 |8
c 0 9 0 |9
cC 0 O o0 |o
G 1 9 1 u
C
C
A
A

* Using Shared Memory
— Stores column-wise sequences and current scores.
— Stored sequences are shared by a block.
— Stored current scores are used by a thread.

Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

38

Parallelize AmpliconNoise (2/3)

* Using Global Memory
— Stores previous row-wise scores.

: | [clalclajals[clclcla[clclala]r
— Stored previous scores are used by B B A B B R B
a thread during next iteration. AR EEeE
A 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
G o0 1 o 1 0o 1 o 1 O 1 O 1 o0 1 o0
G 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1
c o 9 0 9 0 9 0 9 0 9 0 9 0 9 o
c o o o o o 0o o 0o 0O o o O O o0 o
C
C
A
A

* Using Shared Memory
— Stores column-wise sequences and current scores.
— Stored sequences are shared by a block.
— Stored current scores are used by a thread.

Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

39

Parallelize AmpliconNoise (2/3)

* Using Global Memory

— Stores previous row-wise scores.

. C Cc c| C c| C
— Stored previous scores are used by ENNEnNNNNnnnnnnG

a thread during next iteration.

o o0 o0 o6 » > O

Stored in global memory B3 <9 1 9 1 9 1 9 1 9 1 9 1 5 b

0

C

©C —
A 3

A

* Using Shared Memory
— Stores column-wise sequences and current scores.
— Stored sequences are shared by a block.
— Stored current scores are used by a thread.

40 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Parallelize AmpliconNoise (3/3)

* Compressing Backtracking Matrix
— Space complexity = 0(n?N?)
— To reduce memory usage, we compress it by every 8 cells.
— Each cell takes up 4bit, so 8 cells can be compressed to 32bit.

0010

0100 N o
’ 7 N
0100
11 \u i .
G
0010
15 “ \ 15 ¢
0001 .
19 —_ 19 :
0010
23 Voo :
0100 o~
27 \ 27 """""""""""""" <
0001 - A
- 31 A
0001: Left
0010: Up
0100: Diagonal
" St v bl

Optimization

* Using Coalesced Access Pattern

A A 1 A
1 | I | | I | | I | 1

c ACA AGCAAGGTCAAGGTCTCAGSGT CTZE COG

|

Cc CAAAAAGCAGGAGGTCAGTCTCGTCTCOQG

* Reducing Branch Condition

— Any flow control instruction can significantly affect the instruction throughput by
causing threads of the same warp to diverge.

* Considering Occupancy
— Determine the best size of threads per block by calculating occupancy.

42 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

* The tests were run on the following hardware:
— CPU: 2x Intel Xeon X5650 @ 2.67Ghz
— RAM: 64GB
— GPU: 4x NVIDIA GeForce GTX 580 with 3GB of RAM
— OS: Ubuntu Server 10.04.3 LTS 64bit

* The tests were run on the following data set[1]:

— Generated by pyrosequencing a mixture of 91 full length 16S rRNA clones obtained
from an Arctic soil sample.

— # of Reads: 62,873

a4 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

* Before CUDA Parallelization (8-thread MPI version, hh:mm:ss)

1. FastaUnique m 3. FCluster 4. SplitClusterEven

00:00:20 18:17:32 00:30:24 00:00:00

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist

00:02:51 00:06:11 00:18:22 39:20:30

9. FCluster 10. SeqNoise 11. NDist 12. Fcluster

00:11:26 00:11:31 00:00:04 00:00:00

Advanced Computing Laboratory [oo
45 http://acl.korea.ac.kr

* Using 1 GPU

1. FastaUnique m 3. FCluster 4. SplitClusterEven

00:00:07 01:24:07 00:21:09 00:00:00

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist

00:01:43 00:04:37 00:12:13 04:04:31

9. FCluster 10. SeqNoise 11. NDist 12. FCluster

00:08:02 00:03:37 00:00:03 00:00:00

— We parallelized Needleman-Wunsch algorithm part by using CUDA.
— When parallelized by CUDA, it takes 6h 19m 44s using 1 GPU.

Advanced Computing Laboratory [oo
46 http://acl.korea.ac.kr

* Using 4 GPUs

1. FastaUnique m 3. FCluster 4. SplitClusterEven

00:00:08 00:20:15 00:21:33 00:00:00

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist

00:01:20 00:04:18 00:12:13 01:03:14

9. FCluster 10. SeqNoise 11. NDist 12. FCluster

00:07:57 00:03:32 00:00:02 00:00:00

— When parallelized by CUDA, it takes 2h 14m 37s using 4 GPU.

Advanced Computing Laboratory [oo
47 http://acl.korea.ac.kr

1000000 -

100000 -

10000 -

Time

M NDist
 SegDist
M Total Time

2 1000 -

100 -

MPI MPI + CUDA MPI + CUDA
(1 GPU) (4 GPUs)

— When using 1 GPU, 9.34 times faster than MPI using 8 cores.
— When using 4 GPUs, 26.29 times faster than MPI using 8 cores.

48 Advanced Computing Laboratory [oae:
http://acl.korea.ac.kr

Results

3500 3 3 3 3 3 3 5 5 12000 3 3 3 5 -

—6— nist ~HE— Npist
A SeqDist + SeqDist
10000~ 7
3000
8000~
2500
2 Z
> o 60001
£ £
(= =

2000 -

4000~

1500~

T

2000

1000 r r r r r r r r o r r r
70 75 80 85 90 95 100 105 110 115 1 2 3

WinSize # GPUs

EN

Data: A mixture of 91 full length 16S rRNA clones obtained from an Arctic soil
sample[1].

* We concluded that when the window size is set to 88, the performance is best.
— Speed-up is limited by the fixed size GPU register.
— Inappropriate selection of window size can reduce the GPU occupancy.

* As # GPUs increasing, speed-up is proportional to that.

49 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA
'l!l'

Results

4

18h 17m 32s I VP! (S nodes)
[OpenMP (8 threads)
[JCUDA (1 GPU)

15h 32m 20s [CUDA (4 GPUS)

I ~mazon (40 nodes)
5h 16m 58s -
1h 13m 11s
19m 22s
0 e

Methods

()

)]

Time (s)
Time (s)

w

N

x 10

=

25

Reads (x103)
Data: A mixture of 91 full length 16S rRNA clones obtained from an Arctic soil
sample[1].

* Then we compare the performance between MPI, OpenMP, CUDA and Cloud.

— OpenMP gives better performance than MPI since MPI has more communication
latency than that of OpenMP.

— Cloud is a easily scalable method than MPI and OpenMp.
— But, CUDA is an inexpensive and effective method in dealing with data parallelism.

50 Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

Discussion

If the length of reads is getting longer, we have to adjust the window size.
— The window size depends on the GPU RAM.

The # reads does not matter in calculating distance due to the preprocessing
step, but it does in the clustering step.

Compare the methods to parallelize the algorithm.
— MPI
~ Openive BN OpenMP
— CUDA ,

— Cloud

amazon

C U D A webservices™

NVIDIA Technology

51

Advanced Computing Laboratory
http://acl.korea.ac.kr

Pyrosequenced amplicons need to be denoised
— Flowgram signal intensity distributions
— PCR per base error probabilities

— Chimeras

The denoising algorithm can be parallelized by exploiting data parallelism

Alternatives: MPI, OpenMP, CUDA and cloud computing
MPI and cloud: relatively high communication latency
MPI and OpenMP: expensive to scale up

CUDA: relatively inexpensive and effective
more than 25x speed-up wrt 8-thread MPI

52

Advanced Computing Laboratory
http://acl.korea.ac.kr

KOREA

References

[1] Christopher Quince, Anders Lanzen, Russell J Davenport and Peter J
Turnbaugh, “Removing Noise From Pyrosequenced Amplicons”, BMC
Bioinformatics, 2011.

[2] Christopher Quince, Anders Lanzen. Thomas P Curtis, Russell J Davenport,
Neil Hall, lan M Head, L Fiona Read and William T Sloan, “Accurate
determination of microbial diversity from 454 pyrosequencing data”, Nature
Methods, 2009.

[3] Jacek Blazewicz, Wojciech Frohmberg, Michal Kierzynka, Erwin Pesch and
Pawel Wojciechowski, “Protein alignment algorithms with an efficient
backtracking routine on multiple GPUs”, BMC Bioinformatics, 2011.

[4] Chris Fraley and Adrian E. Raftery, “How Many Clusters? Which Clustering
Method? Answers Via Model-Based Cluster Analysis”, The Computer Journal,
1998.

Advanced Computing Laboratory

53 http://acl.korea.ac.kr

Any Questions?

54 Advanced Computing Laboratory

http://acl.korea.ac.kr

