
GPU-BASED ACCELARATION OF 
DENOISING PYROSEQUENCED AMPLICONS 

Byunghan Lee and Sungroh Yoon 

Advanced Computing Laboratory 

Korea University 



• Introduction 

– NGS, Pyrosequencing 

– Pyrosequencing Noise 

– Removing Pyrosequencing Noise 

 

• Methods 

– AmpliconNoise Profiling 

– GPGPU, CUDA 

– Parallelize AmpliconNoise 

– Optimization 

 

• Results & Discussion 

• Summary 

2 

Outline 



3 

Introduction 
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Next Generation Sequencing (NGS) 

Source: Metzker, M. L., DNA sequencing with chain-terminating inhibitors. 
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Pyrosequencing 

• Roche 454 

Source: Siqueira et al., Pyrosequencing as a tool for 
better understanding of human microbiomes. 



• Flowgram Signal Intensity Distributions 

 

 

 

 

 

 

 

 

 

 

 

 

– The observed light intensities do not perfectly match the homopolymer lengths. 
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Pyrosequencing Noise (1/3) 

Source: Quince et al., Removing Noise From Pyrosequenced Amplicons. 
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• PCR per Base Error Probabilities 

– Erroneous nucleotide transition during PCR amplification. 

– The nucleotide transition probabilities were calculated by comparing all reads with 
pyrosequencing noise removed from the three ‘Even’ V2 data sets with the known 
control sequences[1]. 
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Pyrosequencing Noise (2/3) 

A C T G 

A 0.9995 7.2e-6 7.7e-6 5.1e-4 

C 1.1e-05 0.9996 4.1e-4 2.1e-6 

T 9.0e-6 5.7e-4 0.9994 1.4e-5 

G 3.5e-4 3.2e-6 2.1e-5 0.9996 

Source: Quince et al., Removing Noise From Pyrosequenced Amplicons. 

C A C A A G G C 

C A T A A G G C 

The result read (wrong) 

The true read (correct) 



• Chimeras 

– Sequences that are composed of two  
or more true sequences. 

– Chimeras are generated when incomplete  
extension occurs during the PCR process. 

– These generated sequences are quite  
different from either parent. 

 

 

 

• We are focusing on the first two  
sources of error (shown on slides 6 & 7). 
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Pyrosequencing Noise (3/3) 

Source: Roratto et al., PCR-mediated recombination in 
development of microsatellite markers:  

mechanism and implications. 



• Collection of programs for the removal of noise from 454 sequenced PCR 
amplicons developed by Quince et al. (2011). 

 

• Consists of 12 steps in dealing with Titanium reads, 
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AmpliconNoise 
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Removing Noise (1/4) 
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Removing Noise (1/4) 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

6 

1 3 4 2 5 6 

Model 1 Model 2 

Flowgram 1 1 0 

Flowgram 2 0 1 

…
 

Flowgram 6 0 1 

(1) (2) 

(3) 

(4) 

(1) Calculating Pairwise Distance 
(2) Hierarchical Clustering 
(3) Creating Model 
(4) E Step 
(5) M Step 

(5) 

Model 2 A C T … C 

Flowgram 2 

Flowgram 5 

Flowgram 6 

…
 

Position 

In
te

n
si

ty
 

Pairwise Distance Matrix 

Each Flowgram 
Flowgram # 

Fl
o

w
gr

am
 #

 



Model 1 T AA G … C 

Flowgram 1 

Flowgram 3 

Flowgram 4 

12 

Removing Noise (1/4) 
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Removing Noise (1/4) 
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• Removing Sequencing Noise[1, 2, 4] 

– Define distances for given flowgram 𝑓 = 𝑓1, ⋯ , 𝑓𝑀 . 

 

 

 

 

 

 

– To define the likelihood, the density of the observed flowgrams are: 

 

 

 

– The likelihood of the complete data set D is then: 
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Removing Noise (2/4) 

(𝑆: modeled sequence, 𝜎𝑝: characteristic cluster size) 

(𝑈 : perfect flowgram, 𝑀 : flowgram length) 

(𝐷: observed data set, 𝐿: # models, 𝑁: # flowgrams, 𝜏: relative frequency) 



• Removing Sequencing Noise[1, 2, 4] 

– Using an expectation-maximization algorithm to infer the true sequences and their 

frequencies. 

• M step: Find the perfect flowgram with the smallest total distance to all the reads. 

 

 

• Calculate new distances 𝑑′(𝑓 𝑖 , 𝑈 𝑗). 

 

• E step: Calculate new 𝑧 𝑖,𝑗  as the conditional probabilities that sequence 𝑗 generated 

flowgram 𝑖. 

 

 

 

• Repeat until convergence. 
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Removing Noise (3/4) 

(𝑄: unique perfect flowgram) 



• Removing PCR Point Error[1, 2, 4] 

 

 

 

 

 

 

• (𝑒: distance,  𝑟 : given read,  𝑆 : true sequence,  𝐴: alignment length) 

 

– Use mixture model to cluster the sequences. 

– Reads are assumed to be distributed as exponentially decaying functions of their 
sequence error corrected distance from true sequences. 

– Maximum likelihood fit of the mixture model can be obtained using an Expectation-
Maximization (EM) algorithm. 

– Identical to previous noise remover step except that in previous step, distance is 
defined between flowgrams, but here it is defined between sequences. 
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Removing Noise (4/4) 

A C T G 

A 0.9995 7.2e-6 7.7e-6 5.1e-4 

C 1.1e-05 0.9996 4.1e-4 2.1e-6 

T 9.0e-6 5.7e-4 0.9994 1.4e-5 

G 3.5e-4 3.2e-6 2.1e-5 0.9996 
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Methods 
 



• The tests were run on the following hardware: 

– CPU: 2x Intel Xeon E5405 @ 2.00Ghz 

– RAM: 16GB 

– OS: Ubuntu Server 10.04.3 LTS 64bit 

 

• The tests were run on the following data set[1]: 

– Generated by pyrosequencing a mixture of 91 full length 16S rRNA clones obtained 
from an Arctic soil sample. 

– # of Reads: 62,873 
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Profiling (1/3) 



• Using MPI 

 

 

 

 

 

 

 
 

– When parallelized by MPI, it takes 58h 59m 12s using 8 cores. 
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Profiling (2/3) 

1. FastaUnique 2. NDist 3. FCluster 4. SplitClusterEven 

00:00:20 18:17:32 00:30:24 00:00:00 

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist 

00:02:51 00:06:11 00:18:22 39:20:30 

9. FCluster 10. SeqNoise 11. NDist 12. Fcluster 

00:11:26 00:11:31 00:00:04 00:00:00 



 

 

 

 

 

 

 

 

 

 

 

 

 

– Some steps take comparably  long time, so it needs to be parallelized by improved 

solution.  

– Above target steps are dealing with Needleman-Wunsch algorithm which can be 

parallelized by CUDA. 
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Profiling (3/3) 
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• Pairwise distance matrix 

– Time complexity = 𝑂 𝑛2𝑁2  

– Space complexity = 𝑂(𝑛2𝑁2) 

• (𝑛: # flowgram, 𝑁: read length) 

 

• Dynamic programming 

– 𝐹𝑖,𝑗 = 𝑚𝑎𝑥(𝐹𝑖−1,𝑗−1 + 𝑆 𝐴𝑖 , 𝐵𝑗 , 𝐹𝑖,𝑗−1 + 𝑑, 𝐹𝑖−1,𝑗 + 𝑑) 

• (𝐹: each cell,  𝑆: score,  𝑑: gap penalty) 
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Needleman-Wunsch Algorithm 
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• Example 

– Consider the two DNA sequences to be globally aligned are: 

• ATCG (x = 4, length of sequence 1) 

• TCG (y = 3, length of sequence 2) 

 

– Scoring Scheme 

• Match Score = +1 

• Mismatch Score = -1 

• Gap Penalty = -1 
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Needleman-Wunsch Algorithm 



• Example 

– Initialization Step 

• Create a matrix with 𝑥 + 1 rows and 𝑦 + 1 columns. 

• The 1st row and the 1st column of the score matrix are filled as multiple of gap 
penalty. 
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Needleman-Wunsch Algorithm 
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• Example 

– Scoring Step 

• The calculation for the cell 𝐹(2,2): 

– Diagonal = 𝐹 𝑖 − 1, 𝑗 − 1 + 𝑆 𝑖, 𝑗 = 0 + −1 = −1 

– Up = 𝐹 𝑖 − 1, 𝑗 + 𝑔 = −1 + −1 = −2 

– Left = 𝐹 𝑖, 𝑗 − 1 + 𝑔 = −1 + −1 = −2 

24 

Needleman-Wunsch Algorithm 
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• Example 

– Backtracking Step 

• Trace back starts from the last cell, i.e. position (𝑥, 𝑦) in the matrix. 

• Gives alignment in reverse order. 

 

 

 

 

 

 

 

 

• Sequence 1:  

 

• Sequence 2: 
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Needleman-Wunsch Algorithm 
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• Task Parallelism (CPU) 

– Focuses on distributing execution processes across different parallel computing 
nodes. 

• Data Parallelism (GPU) 

– Focuses on distributing data across different parallel computing nodes. 

 

 

 

 

 

 

 

 

 

 

• Needleman-Wunsch algorithm can be accelerated by exploiting data parallelism. 
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Parallelism 



• General-Purpose Computation on Graphics Processing Units 

– High-performance many-core processors 

– Can be used to accelerate a wide variety of applications 
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GPGPU 



• GPU is specialized for compute-intensive, highly parallel 
computation. 

– No data dependency between the pixel operations. 

• More transistors are devoted to data processing rather than data 
caching and flow control. 

 

28 

CPU vs. GPU 

CPU GPU 

Source: NVIDIA, NVIDIA CUDA C Programming Guide. 



• Compute Unified Device Architecture 

• Designed and developed by NVIDIA 

• C programming language on GPUs 

• Requires no knowledge of graphics APIs or GPU programming 

• Easy to get started and to get performance benefits 
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CUDA (1/2) 



• Heterogeneous programming 

– GPU is viewed as a compute device operating as a coprocessor to the main 
CPU(host). 

• A function compiled for device is called a kernel. 

• A kernel is executed by a grid of thread blocks. 

• A thread block is a batch of threads. 

– Sharing data through shared memory. 

– Synchronizing their execution. 
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CUDA (2/2) 

Host 
(CPU) 

Device 
(GPU) 

Threading 
Resources 

Dozens Billions 

Threads Heavy Light 



• Device code can : 

– R/W per-thread register 

– R/W per-thread local memory 

– R/W per-block shared memory 

– R/W per-grid global memory 

– Read only per-grid constant  and 
texture memories 

 

• Host code can: 

– R/W per-grid global, constant and 
texture memories 
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Device Memory Hierarchy 

Source: NVIDIA, NVIDIA CUDA C Programming Guide. 



 

 

 

 

 

 

 

 

 

• Caching depends on compute capability. 

• Minimize data transfer between the host and the device. 
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Features of Device Memory 

Memory 
Located on 

chip 
Cached Access Scope Lifetime 

Register yes n/a R/W 1 thread Thread 

Local no no/yes R/W 1 thread Thread 

Shared yes n/a R/W Block Block 

Global no no/yes R/W Program 
Host 

allocation 

Constant no yes R Program 
Host 

allocation 

Texture no yes R Program 
Host 

allocation 

GTX 280 
GPU ↔ 

Device mem 
Host mem ↔ 
Device mem 

Peak 
bandwidth 

141 GBps 8 GBps 

Source: NVIDIA, NVIDIA CUDA C Programming Guide. 
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CUDA Programming Model 

Source: NVIDIA, NVIDIA CUDA C Programming Guide. 
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CUDA Code (1/2) 

#include "cuda.h“ 

#include <stdio.h> 

 

const int BLOCK_SIZE = 16; 

 

__global__ void VecAdd(float* A, float* B, float* C); 

 

int main() 

{  

 float *h_A, *h_B; // m-by-n matrix for host 

 float *d_A, *d_B; // n-by-m matrix for kernels 

 

 // Initialize input vectors  

 

 // Allocate vectors in device memory  

 cudaMalloc((void**)&d_A, sizeof(float)*m*n); // m-by-n   

 cudaMalloc((void**)&d_B, sizeof(float)*m*n); // m-by-n  

  

 // Copy vectors from host memory to device memory 

 cudaMemcpy(d_A, h_A, sizeof(float)*m*n, cudaMemcpyHostToDevice); 

 cudaMemcpy(d_B, h_B, sizeof(float)*m*n, cudaMemcpyHostToDevice); 

  

 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); 

 dim3 dimGrid(1+m/dimBlock.x, 1+n/dimBlock.y); 

 VecAdd<<< dimGrid, dimBlock >>>(d_A, d_B, d_C); // Invoke kernel 

 

 // Copy result from device memory to host memory 

 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); 

 cudaFree(d_A);cudaFree(d_B);cudaFree(d_C); // Free device memory 

} 

Source: NVIDIA, NVIDIA CUDA C Programming Guide. 



• Kernel Function 

– Executed on the GPU, “Main function of a thread in the device” 

– Single program multiple data (SPMD) 

 

 

 

 

 

 

 

 

– Let’s assume N = 16, blockDim = 4 (# of threads per block) 
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CUDA Code (2/2) 

// Function definition 

void VecAdd(float* A, float* B, float* C, int N) 

{ for(int i = 0; i < N; i++) 

  c[i] = a[i] + b[i];  

} 

// Kernel definition 

__global__ void VecAdd(float* A, float* B, float* C) 

{ int idx = blockDim.x*blockIdx.x+threadIdx.x; 

 C[i] = A[i] + B[i];   

} 

CPU 
Program 

CUDA 
Program 

blockIdx.x = 0 
blockDim.x = 4 
threadIdx.x = 0,1,2,3 
i = 0,1,2,3 

blockIdx.x = 1 
blockDim.x = 4 
threadIdx.x = 0,1,2,3 
i = 4,5,6,7 

blockIdx.x = 2 
blockDim.x = 4 
threadIdx.x = 0,1,2,3 
i = 8,9,10,11 

blockIdx.x = 3 
blockDim.x = 4 
threadIdx.x = 0,1,2,3 
i = 12,13,14,15 



• Divide Score Matrix 

– Device memory is limited, we divide score matrix. 

– The size of window is determined by global memory. 

 

 

 

• Determine Where To Store Data 

– In each step, 4 data are needed during Needleman-Wunsch algorithm. 

– Performance depends on using appropriate memory. 

36 

Parallelize AmpliconNoise (1/3) 
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• Using Global Memory 

– Stores previous row-wise scores. 

– Stored previous scores are used by  
a thread during next iteration. 

 

 

 

 

 

• Using Shared Memory 

– Stores column-wise sequences and current scores. 

– Stored sequences are shared by a block. 

– Stored current scores are used by a thread. 
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Parallelize AmpliconNoise (2/3) 

C A C A A G G C C G C C A A T 
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• Using Global Memory 

– Stores previous row-wise scores. 

– Stored previous scores are used by  
a thread during next iteration. 

 

 

 

 

 

• Using Shared Memory 

– Stores column-wise sequences and current scores. 

– Stored sequences are shared by a block. 

– Stored current scores are used by a thread. 
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Parallelize AmpliconNoise (2/3) 

C A C A A G G C C G C C A A T 

C 0 9 0 9 0 

A 3 1 3 1 3 

A 3 2 3 2 3 

G 0 1 0 1 

G 1 8 1 8 
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C 0 0 0 0 

G 1 9 1 9 
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A 
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• Using Global Memory 

– Stores previous row-wise scores. 

– Stored previous scores are used by  
a thread during next iteration. 

 

 

 

 

 

• Using Shared Memory 

– Stores column-wise sequences and current scores. 

– Stored sequences are shared by a block. 

– Stored current scores are used by a thread. 
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Parallelize AmpliconNoise (2/3) 

C A C A A G G C C G C C A A T 

C 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 

A 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 

A 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 

G 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

G 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 

C 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 

C 

C 

A 

A 

Stored in global memory 



• Using Global Memory 

– Stores previous row-wise scores. 

– Stored previous scores are used by  
a thread during next iteration. 

 

 

 

 

 

• Using Shared Memory 

– Stores column-wise sequences and current scores. 

– Stored sequences are shared by a block. 

– Stored current scores are used by a thread. 
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Parallelize AmpliconNoise (2/3) 

C A C A A G G C C G C C A A T 
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C 3 

A 3 

A 

Stored in global memory 



• Compressing Backtracking Matrix 

– Space complexity = 𝑂(𝑛2𝑁2) 

– To reduce memory usage, we compress it by every 8 cells. 

– Each cell takes up 4bit, so 8 cells can be compressed to 32bit. 
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Parallelize AmpliconNoise (3/3) 
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• Using Coalesced Access Pattern 

 

 

 

 

 

 

 

• Reducing Branch Condition 

– Any flow control instruction can significantly affect the instruction throughput by 
causing threads of the same warp to diverge. 

 

• Considering Occupancy 

– Determine the best size of threads per block by calculating occupancy. 

42 

Optimization 

C A C A A G C A A G G C A A G G C C A G G C C G 
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Results 
 



• The tests were run on the following hardware: 

– CPU: 2x Intel Xeon X5650 @ 2.67Ghz 

– RAM: 64GB 

– GPU: 4x NVIDIA GeForce GTX 580 with 3GB of RAM 

– OS: Ubuntu Server 10.04.3 LTS 64bit 

 

• The tests were run on the following data set[1]: 

– Generated by pyrosequencing a mixture of 91 full length 16S rRNA clones obtained 
from an Arctic soil sample. 

– # of Reads: 62,873 
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Results 



• Before CUDA Parallelization (8-thread MPI version, hh:mm:ss) 
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Results 

1. FastaUnique 2. NDist 3. FCluster 4. SplitClusterEven 

00:00:20 18:17:32 00:30:24 00:00:00 

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist 

00:02:51 00:06:11 00:18:22 39:20:30 

9. FCluster 10. SeqNoise 11. NDist 12. Fcluster 

00:11:26 00:11:31 00:00:04 00:00:00 



• Using 1 GPU 

 

 

 

 

 

 

 
 

– We parallelized Needleman-Wunsch algorithm part by using CUDA. 

– When parallelized by CUDA, it takes 6h 19m 44s using 1 GPU. 
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Results 

1. FastaUnique 2. NDist 3. FCluster 4. SplitClusterEven 

00:00:07 01:24:07 00:21:09 00:00:00 

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist 

00:01:43 00:04:37 00:12:13 04:04:31 

9. FCluster 10. SeqNoise 11. NDist 12. FCluster 

00:08:02 00:03:37 00:00:03 00:00:00 



• Using 4 GPUs  

 

 

 

 

 

 

 
 

– When parallelized by CUDA, it takes 2h 14m 37s using 4 GPU. 
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Results 

1. FastaUnique 2. NDist 3. FCluster 4. SplitClusterEven 

00:00:08 00:20:15 00:21:33 00:00:00 

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist 

00:01:20 00:04:18 00:12:13 01:03:14 

9. FCluster 10. SeqNoise 11. NDist 12. FCluster 

00:07:57 00:03:32 00:00:02 00:00:00 



 

 

 

 

 

 

 

 
 
 

– When using 1 GPU, 9.34 times faster than MPI using 8 cores. 

– When using 4 GPUs, 26.29 times faster than MPI using 8 cores. 
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Results 
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• We concluded that when the window size is set to 88, the performance is best. 

– Speed-up is limited by the fixed size GPU register. 

– Inappropriate selection of window size can reduce the GPU occupancy. 

• As # GPUs increasing, speed-up is proportional to that. 
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Results 
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• Then we compare the performance between MPI, OpenMP, CUDA and Cloud. 
– OpenMP gives better performance than MPI since MPI has more communication 

latency than that of OpenMP. 

– Cloud is a easily scalable method than MPI and OpenMp. 

– But, CUDA is an inexpensive and effective method in dealing with data parallelism. 
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• If the length of reads is getting longer, we have to adjust the window size. 

– The window size depends on the GPU RAM. 

 

• The # reads does not matter in calculating distance due to the preprocessing 
step, but it does in the clustering step. 

 

• Compare the methods to parallelize the algorithm. 

– MPI 

– OpenMP 

– CUDA 

– Cloud 
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• Pyrosequenced amplicons need to be denoised 

– Flowgram signal intensity distributions 

– PCR per base error probabilities 

– Chimeras 

 

• The denoising algorithm can be parallelized by exploiting data parallelism 

– Alternatives: MPI, OpenMP, CUDA and cloud computing 

– MPI and cloud: relatively high communication latency 

– MPI and OpenMP: expensive to scale up 

– CUDA: relatively inexpensive and effective 
             more than 25x speed-up wrt 8-thread MPI 
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