
GPU-BASED ACCELARATION OF
DENOISING PYROSEQUENCED AMPLICONS

Byunghan Lee and Sungroh Yoon

Advanced Computing Laboratory

Korea University

• Introduction

– NGS, Pyrosequencing

– Pyrosequencing Noise

– Removing Pyrosequencing Noise

• Methods

– AmpliconNoise Profiling

– GPGPU, CUDA

– Parallelize AmpliconNoise

– Optimization

• Results & Discussion

• Summary

2

Outline

3

Introduction

4

Next Generation Sequencing (NGS)

Source: Metzker, M. L., DNA sequencing with chain-terminating inhibitors.

5

Pyrosequencing

• Roche 454

Source: Siqueira et al., Pyrosequencing as a tool for
better understanding of human microbiomes.

• Flowgram Signal Intensity Distributions

– The observed light intensities do not perfectly match the homopolymer lengths.

6

Pyrosequencing Noise (1/3)

Source: Quince et al., Removing Noise From Pyrosequenced Amplicons.

0.03 1.03 0.09 0.12 1.49 0.09 0.09 1.01

C T G

C TT G

Raw data

The result read (wrong)

The true read (correct)

T C A G

• PCR per Base Error Probabilities

– Erroneous nucleotide transition during PCR amplification.

– The nucleotide transition probabilities were calculated by comparing all reads with
pyrosequencing noise removed from the three ‘Even’ V2 data sets with the known
control sequences[1].

7

Pyrosequencing Noise (2/3)

A C T G

A 0.9995 7.2e-6 7.7e-6 5.1e-4

C 1.1e-05 0.9996 4.1e-4 2.1e-6

T 9.0e-6 5.7e-4 0.9994 1.4e-5

G 3.5e-4 3.2e-6 2.1e-5 0.9996

Source: Quince et al., Removing Noise From Pyrosequenced Amplicons.

C A C A A G G C

C A T A A G G C

The result read (wrong)

The true read (correct)

• Chimeras

– Sequences that are composed of two
or more true sequences.

– Chimeras are generated when incomplete
extension occurs during the PCR process.

– These generated sequences are quite
different from either parent.

• We are focusing on the first two
sources of error (shown on slides 6 & 7).

8

Pyrosequencing Noise (3/3)

Source: Roratto et al., PCR-mediated recombination in
development of microsatellite markers:

mechanism and implications.

• Collection of programs for the removal of noise from 454 sequenced PCR
amplicons developed by Quince et al. (2011).

• Consists of 12 steps in dealing with Titanium reads,

9

AmpliconNoise

FastaUnique

SplitClusterEven

NDist

FCluster

PyroDist

FCluster

PyroNoiseM

SeqDist

FCluster

SeqNoise

NDist

FCluster

Split Input Data
Remove

Pyrosequencing Noise
Remove

PCR Noise Create OTUs

Model 1 T A G … C

Flowgram 1

Flowgram 3

Flowgram 4

10

Removing Noise (1/4)

1 2 3 4 5 6

1

2

3

4

5

6

1 3 4 2 5 6

Model 1 Model 2

Flowgram 1 1 0

Flowgram 2 0 1

…

Flowgram 6 0 1

(1) (2)

(3)

(4)

(1) Calculating Pairwise Distance
(2) Hierarchical Clustering
(3) Creating Model
(4) E Step
(5) M Step

(5)

Model 2 A C T … C

Flowgram 2

Flowgram 5

Flowgram 6

…

Position

In
te

n
si

ty

Pairwise Distance Matrix

Each Flowgram
Flowgram #

Fl
o

w
gr

am
 #

Model 1 T A G … C

Flowgram 1

Flowgram 3

Flowgram 4

11

Removing Noise (1/4)

1 2 3 4 5 6

1

2

3

4

5

6

1 3 4 2 5 6

Model 1 Model 2

Flowgram 1 1 0

Flowgram 2 0 1

…

Flowgram 6 0 1

(1) (2)

(3)

(4)

(1) Calculating Pairwise Distance
(2) Hierarchical Clustering
(3) Creating Model
(4) E Step
(5) M Step

(5)

Model 2 A C T … C

Flowgram 2

Flowgram 5

Flowgram 6

…

Position

In
te

n
si

ty

Pairwise Distance Matrix

Each Flowgram
Flowgram #

Fl
o

w
gr

am
 #

Model 1 T AA G … C

Flowgram 1

Flowgram 3

Flowgram 4

12

Removing Noise (1/4)

1 2 3 4 5 6

1

2

3

4

5

6

1 3 4 2 5 6

Model 1 Model 2

Flowgram 1 0.89 0.11

Flowgram 2 0.06 0.94

…

Flowgram 6 0.08 0.92

(1) (2)

(3)

(4)

(1) Calculating Pairwise Distance
(2) Hierarchical Clustering
(3) Creating Model
(4) E Step
(5) M Step

(5)

…

Position

In
te

n
si

ty

Pairwise Distance Matrix

Each Flowgram
Flowgram #

Fl
o

w
gr

am
 #

Model 1 T AA G … C

Flowgram 1

Flowgram 3

Flowgram 4

13

Removing Noise (1/4)

1 2 3 4 5 6

1

2

3

4

5

6

1 3 4 2 5 6

Model 1 Model 2

Flowgram 1 0.92 0.08

Flowgram 2 0.11 0.89

…

Flowgram 6 0.13 0.87

(1) (2)

(3)

(4)

(1) Calculating Pairwise Distance
(2) Hierarchical Clustering
(3) Creating Model
(4) E Step
(5) M Step

(5)

…

Position

In
te

n
si

ty

Pairwise Distance Matrix

Each Flowgram
Flowgram #

Fl
o

w
gr

am
 #

• Removing Sequencing Noise[1, 2, 4]

– Define distances for given flowgram 𝑓 = 𝑓1, ⋯ , 𝑓𝑀 .

– To define the likelihood, the density of the observed flowgrams are:

– The likelihood of the complete data set D is then:

14

Removing Noise (2/4)

(𝑆: modeled sequence, 𝜎𝑝: characteristic cluster size)

(𝑈 : perfect flowgram, 𝑀 : flowgram length)

(𝐷: observed data set, 𝐿: # models, 𝑁: # flowgrams, 𝜏: relative frequency)

• Removing Sequencing Noise[1, 2, 4]

– Using an expectation-maximization algorithm to infer the true sequences and their

frequencies.

• M step: Find the perfect flowgram with the smallest total distance to all the reads.

• Calculate new distances 𝑑′(𝑓 𝑖 , 𝑈 𝑗).

• E step: Calculate new 𝑧 𝑖,𝑗 as the conditional probabilities that sequence 𝑗 generated

flowgram 𝑖.

• Repeat until convergence.

15

Removing Noise (3/4)

(𝑄: unique perfect flowgram)

• Removing PCR Point Error[1, 2, 4]

• (𝑒: distance, 𝑟 : given read, 𝑆 : true sequence, 𝐴: alignment length)

– Use mixture model to cluster the sequences.

– Reads are assumed to be distributed as exponentially decaying functions of their
sequence error corrected distance from true sequences.

– Maximum likelihood fit of the mixture model can be obtained using an Expectation-
Maximization (EM) algorithm.

– Identical to previous noise remover step except that in previous step, distance is
defined between flowgrams, but here it is defined between sequences.

16

Removing Noise (4/4)

A C T G

A 0.9995 7.2e-6 7.7e-6 5.1e-4

C 1.1e-05 0.9996 4.1e-4 2.1e-6

T 9.0e-6 5.7e-4 0.9994 1.4e-5

G 3.5e-4 3.2e-6 2.1e-5 0.9996

17

Methods

• The tests were run on the following hardware:

– CPU: 2x Intel Xeon E5405 @ 2.00Ghz

– RAM: 16GB

– OS: Ubuntu Server 10.04.3 LTS 64bit

• The tests were run on the following data set[1]:

– Generated by pyrosequencing a mixture of 91 full length 16S rRNA clones obtained
from an Arctic soil sample.

– # of Reads: 62,873

18

Profiling (1/3)

• Using MPI

– When parallelized by MPI, it takes 58h 59m 12s using 8 cores.

19

Profiling (2/3)

1. FastaUnique 2. NDist 3. FCluster 4. SplitClusterEven

00:00:20 18:17:32 00:30:24 00:00:00

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist

00:02:51 00:06:11 00:18:22 39:20:30

9. FCluster 10. SeqNoise 11. NDist 12. Fcluster

00:11:26 00:11:31 00:00:04 00:00:00

– Some steps take comparably long time, so it needs to be parallelized by improved

solution.

– Above target steps are dealing with Needleman-Wunsch algorithm which can be

parallelized by CUDA.

20

Profiling (3/3)

0%

NDist, 31%

1%
0%

0%

0% 1%

SeqDist,
67%

0% 0%

0%
0%

Run time

FastaUnique

NDist

FCluster

SplitClusterEven

PyroDist

FCluster

PyroNoiseM

SeqDist

FCluster

• Pairwise distance matrix

– Time complexity = 𝑂 𝑛2𝑁2

– Space complexity = 𝑂(𝑛2𝑁2)

• (𝑛: # flowgram, 𝑁: read length)

• Dynamic programming

– 𝐹𝑖,𝑗 = 𝑚𝑎𝑥(𝐹𝑖−1,𝑗−1 + 𝑆 𝐴𝑖 , 𝐵𝑗 , 𝐹𝑖,𝑗−1 + 𝑑, 𝐹𝑖−1,𝑗 + 𝑑)

• (𝐹: each cell, 𝑆: score, 𝑑: gap penalty)

21

Needleman-Wunsch Algorithm

A A G

0 -2 -4 -6

A -2

A -4

A -6

C -8

A A G

0 -2 -4 -6

A -2 1 -1

A -4

A -6

C -8

A A G

0 -2 -4 -6

A -2 1 -1 -3

A -4 -1 0 -2

A -6 -3 -2 -1

C -8 -5 -4 -1

1. Initialize Score Matrix 2. Calculate each Cell 3. Backtracking

• Example

– Consider the two DNA sequences to be globally aligned are:

• ATCG (x = 4, length of sequence 1)

• TCG (y = 3, length of sequence 2)

– Scoring Scheme

• Match Score = +1

• Mismatch Score = -1

• Gap Penalty = -1

22

Needleman-Wunsch Algorithm

• Example

– Initialization Step

• Create a matrix with 𝑥 + 1 rows and 𝑦 + 1 columns.

• The 1st row and the 1st column of the score matrix are filled as multiple of gap
penalty.

23

Needleman-Wunsch Algorithm

T C G

0

A

T

C

G

-1 -2 -3

-1

-2

-3

-4

• Example

– Scoring Step

• The calculation for the cell 𝐹(2,2):

– Diagonal = 𝐹 𝑖 − 1, 𝑗 − 1 + 𝑆 𝑖, 𝑗 = 0 + −1 = −1

– Up = 𝐹 𝑖 − 1, 𝑗 + 𝑔 = −1 + −1 = −2

– Left = 𝐹 𝑖, 𝑗 − 1 + 𝑔 = −1 + −1 = −2

24

Needleman-Wunsch Algorithm

T C G

0

A

T

C

G

-1 -2 -3

-1

-2

-3

-4

-1 -2 -3

0 -1 -2

-1 1 0

-2 0 2

• Example

– Backtracking Step

• Trace back starts from the last cell, i.e. position (𝑥, 𝑦) in the matrix.

• Gives alignment in reverse order.

• Sequence 1:

• Sequence 2:

25

Needleman-Wunsch Algorithm

T C G

0

A

T

C

G

-1 -2 -3

-1

-2

-3

-4

-1 -2 -3

0 -1 -2

-1 1 0

-2 0 2

A T C G

| | | |

- T C G

• Task Parallelism (CPU)

– Focuses on distributing execution processes across different parallel computing
nodes.

• Data Parallelism (GPU)

– Focuses on distributing data across different parallel computing nodes.

• Needleman-Wunsch algorithm can be accelerated by exploiting data parallelism.

26

Parallelism

• General-Purpose Computation on Graphics Processing Units

– High-performance many-core processors

– Can be used to accelerate a wide variety of applications

27

GPGPU

• GPU is specialized for compute-intensive, highly parallel
computation.

– No data dependency between the pixel operations.

• More transistors are devoted to data processing rather than data
caching and flow control.

28

CPU vs. GPU

CPU GPU

Source: NVIDIA, NVIDIA CUDA C Programming Guide.

• Compute Unified Device Architecture

• Designed and developed by NVIDIA

• C programming language on GPUs

• Requires no knowledge of graphics APIs or GPU programming

• Easy to get started and to get performance benefits

29

CUDA (1/2)

• Heterogeneous programming

– GPU is viewed as a compute device operating as a coprocessor to the main
CPU(host).

• A function compiled for device is called a kernel.

• A kernel is executed by a grid of thread blocks.

• A thread block is a batch of threads.

– Sharing data through shared memory.

– Synchronizing their execution.

30

CUDA (2/2)

Host
(CPU)

Device
(GPU)

Threading
Resources

Dozens Billions

Threads Heavy Light

• Device code can :

– R/W per-thread register

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant and
texture memories

• Host code can:

– R/W per-grid global, constant and
texture memories

31

Device Memory Hierarchy

Source: NVIDIA, NVIDIA CUDA C Programming Guide.

• Caching depends on compute capability.

• Minimize data transfer between the host and the device.

32

Features of Device Memory

Memory
Located on

chip
Cached Access Scope Lifetime

Register yes n/a R/W 1 thread Thread

Local no no/yes R/W 1 thread Thread

Shared yes n/a R/W Block Block

Global no no/yes R/W Program
Host

allocation

Constant no yes R Program
Host

allocation

Texture no yes R Program
Host

allocation

GTX 280
GPU ↔

Device mem
Host mem ↔
Device mem

Peak
bandwidth

141 GBps 8 GBps

Source: NVIDIA, NVIDIA CUDA C Programming Guide.

33

CUDA Programming Model

Source: NVIDIA, NVIDIA CUDA C Programming Guide.

34

CUDA Code (1/2)

#include "cuda.h“

#include <stdio.h>

const int BLOCK_SIZE = 16;

__global__ void VecAdd(float* A, float* B, float* C);

int main()

{

 float *h_A, *h_B; // m-by-n matrix for host

 float *d_A, *d_B; // n-by-m matrix for kernels

 // Initialize input vectors

 // Allocate vectors in device memory

 cudaMalloc((void**)&d_A, sizeof(float)*m*n); // m-by-n

 cudaMalloc((void**)&d_B, sizeof(float)*m*n); // m-by-n

 // Copy vectors from host memory to device memory

 cudaMemcpy(d_A, h_A, sizeof(float)*m*n, cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, sizeof(float)*m*n, cudaMemcpyHostToDevice);

 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

 dim3 dimGrid(1+m/dimBlock.x, 1+n/dimBlock.y);

 VecAdd<<< dimGrid, dimBlock >>>(d_A, d_B, d_C); // Invoke kernel

 // Copy result from device memory to host memory

 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

 cudaFree(d_A);cudaFree(d_B);cudaFree(d_C); // Free device memory

}

Source: NVIDIA, NVIDIA CUDA C Programming Guide.

• Kernel Function

– Executed on the GPU, “Main function of a thread in the device”

– Single program multiple data (SPMD)

– Let’s assume N = 16, blockDim = 4 (# of threads per block)

35

CUDA Code (2/2)

// Function definition

void VecAdd(float* A, float* B, float* C, int N)

{ for(int i = 0; i < N; i++)

 c[i] = a[i] + b[i];

}

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{ int idx = blockDim.x*blockIdx.x+threadIdx.x;

 C[i] = A[i] + B[i];

}

CPU
Program

CUDA
Program

blockIdx.x = 0
blockDim.x = 4
threadIdx.x = 0,1,2,3
i = 0,1,2,3

blockIdx.x = 1
blockDim.x = 4
threadIdx.x = 0,1,2,3
i = 4,5,6,7

blockIdx.x = 2
blockDim.x = 4
threadIdx.x = 0,1,2,3
i = 8,9,10,11

blockIdx.x = 3
blockDim.x = 4
threadIdx.x = 0,1,2,3
i = 12,13,14,15

• Divide Score Matrix

– Device memory is limited, we divide score matrix.

– The size of window is determined by global memory.

• Determine Where To Store Data

– In each step, 4 data are needed during Needleman-Wunsch algorithm.

– Performance depends on using appropriate memory.

36

Parallelize AmpliconNoise (1/3)

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Created by previous step

Created by current step

window size

88 reads

• Using Global Memory

– Stores previous row-wise scores.

– Stored previous scores are used by
a thread during next iteration.

• Using Shared Memory

– Stores column-wise sequences and current scores.

– Stored sequences are shared by a block.

– Stored current scores are used by a thread.

37

Parallelize AmpliconNoise (2/3)

C A C A A G G C C G C C A A T

C

A

A

G

G

C

C

G

C

C

A

A

Stored in global memory

Stored in shared memory

• Using Global Memory

– Stores previous row-wise scores.

– Stored previous scores are used by
a thread during next iteration.

• Using Shared Memory

– Stores column-wise sequences and current scores.

– Stored sequences are shared by a block.

– Stored current scores are used by a thread.

38

Parallelize AmpliconNoise (2/3)

C A C A A G G C C G C C A A T

C 0 9 0 9 0

A 3 1 3 1 3

A 3 2 3 2 3

G 0 1 0 1

G 1 8 1 8

C 0 9 0 9

C 0 0 0 0

G 1 9 1 9

C

C

A

A

Stored in shared memory

• Using Global Memory

– Stores previous row-wise scores.

– Stored previous scores are used by
a thread during next iteration.

• Using Shared Memory

– Stores column-wise sequences and current scores.

– Stored sequences are shared by a block.

– Stored current scores are used by a thread.

39

Parallelize AmpliconNoise (2/3)

C A C A A G G C C G C C A A T

C 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0

A 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

A 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

G 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

G 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1

C 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1

C

C

A

A

Stored in global memory

• Using Global Memory

– Stores previous row-wise scores.

– Stored previous scores are used by
a thread during next iteration.

• Using Shared Memory

– Stores column-wise sequences and current scores.

– Stored sequences are shared by a block.

– Stored current scores are used by a thread.

40

Parallelize AmpliconNoise (2/3)

C A C A A G G C C G C C A A T

C

A

A

G

G

C

C

G 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1

C 0

C 3

A 3

A

Stored in global memory

• Compressing Backtracking Matrix

– Space complexity = 𝑂(𝑛2𝑁2)

– To reduce memory usage, we compress it by every 8 cells.

– Each cell takes up 4bit, so 8 cells can be compressed to 32bit.

41

Parallelize AmpliconNoise (3/3)

C A C A A G G C C G C C A A C

C

A

A

G

G

C

C

G

C

C

A

A

3

7

11

15

19

23

27

31

3
0010

7
0100

11
0100

15
0010

19
0001

23
0010

27
0100

31
0001

0001: Left
0010: Up
0100: Diagonal

• Using Coalesced Access Pattern

• Reducing Branch Condition

– Any flow control instruction can significantly affect the instruction throughput by
causing threads of the same warp to diverge.

• Considering Occupancy

– Determine the best size of threads per block by calculating occupancy.

42

Optimization

C A C A A G C A A G G C A A G G C C A G G C C G

C C A A A A A G C A G G A G G C A G C C G C C G

Sequence1 Sequence2 Sequence3 Sequence4

43

Results

• The tests were run on the following hardware:

– CPU: 2x Intel Xeon X5650 @ 2.67Ghz

– RAM: 64GB

– GPU: 4x NVIDIA GeForce GTX 580 with 3GB of RAM

– OS: Ubuntu Server 10.04.3 LTS 64bit

• The tests were run on the following data set[1]:

– Generated by pyrosequencing a mixture of 91 full length 16S rRNA clones obtained
from an Arctic soil sample.

– # of Reads: 62,873

44

Results

• Before CUDA Parallelization (8-thread MPI version, hh:mm:ss)

45

Results

1. FastaUnique 2. NDist 3. FCluster 4. SplitClusterEven

00:00:20 18:17:32 00:30:24 00:00:00

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist

00:02:51 00:06:11 00:18:22 39:20:30

9. FCluster 10. SeqNoise 11. NDist 12. Fcluster

00:11:26 00:11:31 00:00:04 00:00:00

• Using 1 GPU

– We parallelized Needleman-Wunsch algorithm part by using CUDA.

– When parallelized by CUDA, it takes 6h 19m 44s using 1 GPU.

46

Results

1. FastaUnique 2. NDist 3. FCluster 4. SplitClusterEven

00:00:07 01:24:07 00:21:09 00:00:00

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist

00:01:43 00:04:37 00:12:13 04:04:31

9. FCluster 10. SeqNoise 11. NDist 12. FCluster

00:08:02 00:03:37 00:00:03 00:00:00

• Using 4 GPUs

– When parallelized by CUDA, it takes 2h 14m 37s using 4 GPU.

47

Results

1. FastaUnique 2. NDist 3. FCluster 4. SplitClusterEven

00:00:08 00:20:15 00:21:33 00:00:00

5. PyroDist 6. FCluster 7. PyroNoiseM 8. SeqDist

00:01:20 00:04:18 00:12:13 01:03:14

9. FCluster 10. SeqNoise 11. NDist 12. FCluster

00:07:57 00:03:32 00:00:02 00:00:00

– When using 1 GPU, 9.34 times faster than MPI using 8 cores.

– When using 4 GPUs, 26.29 times faster than MPI using 8 cores.

48

Results

1

10

100

1000

10000

100000

1000000

MPI MPI + CUDA
(1 GPU)

MPI + CUDA
(4 GPUs)

NDist

SeqDist

Total Time

Ti
m

e
(s

)

• We concluded that when the window size is set to 88, the performance is best.

– Speed-up is limited by the fixed size GPU register.

– Inappropriate selection of window size can reduce the GPU occupancy.

• As # GPUs increasing, speed-up is proportional to that.

49

Results

70 75 80 85 90 95 100 105 110 115
1000

1500

2000

2500

3000

3500

WinSize

T
im

e
 (

s
)

NDist

SeqDist

1 2 3 4
0

2000

4000

6000

8000

10000

12000

GPUs

T
im

e
 (

s
)

NDist

SeqDist

Data: A mixture of 91 full length 16S rRNA clones obtained from an Arctic soil
sample[1].

• Then we compare the performance between MPI, OpenMP, CUDA and Cloud.
– OpenMP gives better performance than MPI since MPI has more communication

latency than that of OpenMP.

– Cloud is a easily scalable method than MPI and OpenMp.

– But, CUDA is an inexpensive and effective method in dealing with data parallelism.

50

Results

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Reads (x10
3
)

T
im

e
 (

s
)

1 GPU

OpenMP

0

1

2

3

4

5

6

7
x 10

4

Methods

T
im

e
 (

s
)

MPI (8 nodes)

OpenMP (8 threads)

CUDA (1 GPU)

CUDA (4 GPUs)

Amazon (40 nodes)

15h 32m 20s

18h 17m 32s

1h 13m 11s

19m 22s

5h 16m 58s

Data: A mixture of 91 full length 16S rRNA clones obtained from an Arctic soil
sample[1].

• If the length of reads is getting longer, we have to adjust the window size.

– The window size depends on the GPU RAM.

• The # reads does not matter in calculating distance due to the preprocessing
step, but it does in the clustering step.

• Compare the methods to parallelize the algorithm.

– MPI

– OpenMP

– CUDA

– Cloud

51

Discussion

• Pyrosequenced amplicons need to be denoised

– Flowgram signal intensity distributions

– PCR per base error probabilities

– Chimeras

• The denoising algorithm can be parallelized by exploiting data parallelism

– Alternatives: MPI, OpenMP, CUDA and cloud computing

– MPI and cloud: relatively high communication latency

– MPI and OpenMP: expensive to scale up

– CUDA: relatively inexpensive and effective
 more than 25x speed-up wrt 8-thread MPI

52

Summary

• [1] Christopher Quince, Anders Lanzen, Russell J Davenport and Peter J
Turnbaugh, “Removing Noise From Pyrosequenced Amplicons”, BMC
Bioinformatics, 2011.

• [2] Christopher Quince, Anders Lanzen. Thomas P Curtis, Russell J Davenport,
Neil Hall, Ian M Head, L Fiona Read and William T Sloan, “Accurate
determination of microbial diversity from 454 pyrosequencing data”, Nature
Methods, 2009.

• [3] Jacek Blazewicz, Wojciech Frohmberg, Michal Kierzynka, Erwin Pesch and
Pawel Wojciechowski, “Protein alignment algorithms with an efficient
backtracking routine on multiple GPUs”, BMC Bioinformatics, 2011.

• [4] Chris Fraley and Adrian E. Raftery, “How Many Clusters? Which Clustering
Method? Answers Via Model-Based Cluster Analysis”, The Computer Journal,
1998.

53

References

54

Any Questions?

